Back to Search Start Over

v-SRC specifically regulates the nucleo-cytoplasmic delocalization of the major isoform of TEL (ETV6).

Authors :
Lopez RG
Carron C
Ghysdael J
Source :
The Journal of biological chemistry [J Biol Chem] 2003 Oct 17; Vol. 278 (42), pp. 41316-25. Date of Electronic Publication: 2003 Jul 31.
Publication Year :
2003

Abstract

TEL is a frequent target of chromosomal translocations in human cancer and an alleged tumor suppressor gene. TEL encodes two isoforms: a major TEL-M1 isoform as well as TEL-M43, which lacks the first 42 amino acid residues of TEL-M1. Both isoforms are potent transcriptional repressors that can inhibit RAS-induced transformation. Here we show that the v-SRC protein-tyrosine kinase relieves the repressive activity of TEL-M1, an activity that is associated with the v-SRC-induced delocalization of TEL-M1 from the nucleus to the cytoplasm. TEL-M1 delocalization requires the kinase activity of v-SRC and is not induced by oncogenic RAS or AKT. Cytoplasmic delocalization of TEL-M1 in response to v-SRC critically depends upon its unique amino-terminal domain (SRCD domain) because (i). v-SRC did not inhibit the repressive properties of TEL-M43, nor affected TEL-M43 nuclear localization; (ii). fusion of the first 52 amino acid residues of TEL-M1 to FLI-1, an ETS protein insensitive to v-SRC-induced delocalization, is sufficient to confer v-SRC-induced delocalization to this TEL/FLI-1 chimeric protein. The v-SRC-induced nucleo-cytoplasmic delocalization of TEL-M1 does not involve phosphorylation of the SRCD and does not require TEL self-association and repressive domains. Finally, enforced expression of the v-SRC-insensitive TEL-M43, but not of TEL-M1, inhibits v-SRC-induced transformation of NIH3T3 fibroblasts. These results identify a regulatory domain in TEL that specifically impinges on the subcellular localization of its major TEL-M1 isoform. They, furthermore, indicate that inhibition of TEL-M1 nuclear function is required for v-SRC to induce cellular transformation.

Details

Language :
English
ISSN :
0021-9258
Volume :
278
Issue :
42
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
12893822
Full Text :
https://doi.org/10.1074/jbc.M306435200