Back to Search
Start Over
Fibroblast growth factor mediates hypoxia-induced endothelin-- a receptor expression in lung artery smooth muscle cells.
- Source :
-
Journal of applied physiology (Bethesda, Md. : 1985) [J Appl Physiol (1985)] 2003 Aug; Vol. 95 (2), pp. 643-51; discussion 863. - Publication Year :
- 2003
-
Abstract
- We have previously demonstrated that endothelin (ET)-1 and its subtype A receptor (ET-AR) expression are increased in lung under hypoxic conditions and that activation of ET-AR by ET-1 is a major mediator of hypoxia-induced pulmonary hypertension in the rat. The present study tested the hypothesis that the hypoxia-responsive tyrosine kinase receptor-activating growth factors fibroblast growth factor (FGF)-1, FGF-2, and platelet-derived growth factor (PDGF)-BB stimulate expression of the ET-AR in pulmonary arterial smooth muscle cells (PASMCs). Quiescent rat PASMCs were incubated under hypoxia (1% O2), or with FGF-1, FGF-2, PDGF-BB, vascular endothelial growth factor, ET-1, angiotensin II, or atrial natriuretic peptide under normoxic conditions for 24 h. FGF-1 and -2 and PDGF-BB, but not hypoxia, vascular endothelial growth factor, ET-1, angiotensin II, or atrial natriuretic peptide, significantly increased ET-AR mRNA levels. FGF-1-induced ET-AR expression was inhibited by FGF-receptor inhibitor PD-166866, MEK inhibitor U-0126, transcription inhibitor actinomycin D, and translation inhibitor cycloheximide. In contrast, the stimulatory effect of FGF-1 on ET-AR mRNA expression was not altered by PI3 kinase, PKA, PKC, or adenylate cyclase inhibitors. PASMC ET-AR gene transcription, assessed by nuclear-runoff analysis, was increased by FGF-1. These results provide novel finding that ET-AR in PASMCs in vitro is unresponsive to hypoxia per se but is robustly simulated by tyrosine kinase receptor-associated growth factors (FGF-1, FGF-2, PDGF-BB) that themselves are stimulated by hypoxia in lung. This observation suggests a novel signaling mechanism that may be responsible for overexpression of ET-AR in lung, and may contribute to the hypoxia-induced pulmonary vasoconstriction, hypertension, and vascular remodeling in hypoxia-adapted animal.
- Subjects :
- Animals
Cycloheximide pharmacology
Dactinomycin pharmacology
Dose-Response Relationship, Drug
Fibroblast Growth Factor 1 administration & dosage
Fibroblast Growth Factor 1 antagonists & inhibitors
Fibroblast Growth Factor 1 metabolism
Fibroblast Growth Factor 2 metabolism
Growth Substances pharmacology
Humans
Muscle, Smooth, Vascular cytology
Nucleic Acid Synthesis Inhibitors pharmacology
Protein Biosynthesis drug effects
Protein Synthesis Inhibitors pharmacology
Pulmonary Artery cytology
Rats
Receptor, Endothelin A drug effects
Signal Transduction physiology
Transcription, Genetic drug effects
Up-Regulation
Fibroblast Growth Factors metabolism
Hypoxia metabolism
Muscle, Smooth, Vascular metabolism
Myocytes, Smooth Muscle metabolism
Pulmonary Artery metabolism
Receptor, Endothelin A metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 8750-7587
- Volume :
- 95
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Journal of applied physiology (Bethesda, Md. : 1985)
- Publication Type :
- Academic Journal
- Accession number :
- 12851419
- Full Text :
- https://doi.org/10.1152/japplphysiol.00652.2002