Back to Search
Start Over
Novel role of vitamin k in preventing oxidative injury to developing oligodendrocytes and neurons.
- Source :
-
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2003 Jul 02; Vol. 23 (13), pp. 5816-26. - Publication Year :
- 2003
-
Abstract
- Oxidative stress is believed to be the cause of cell death in multiple disorders of the brain, including perinatal hypoxia/ischemia. Glutamate, cystine deprivation, homocysteic acid, and the glutathione synthesis inhibitor buthionine sulfoximine all cause oxidative injury to immature neurons and oligodendrocytes by depleting intracellular glutathione. Although vitamin K is not a classical antioxidant, we report here the novel finding that vitamin K1 and K2 (menaquinone-4) potently inhibit glutathione depletion-mediated oxidative cell death in primary cultures of oligodendrocyte precursors and immature fetal cortical neurons with EC50 values of 30 nm and 2 nm, respectively. The mechanism by which vitamin K blocks oxidative injury is independent of its only known biological function as a cofactor for gamma-glutamylcarboxylase, an enzyme responsible for posttranslational modification of specific proteins. Neither oligodendrocytes nor neurons possess significant vitamin K-dependent carboxylase or epoxidase activity. Furthermore, the vitamin K antagonists warfarin and dicoumarol and the direct carboxylase inhibitor 2-chloro-vitamin K1 have no effect on the protective function of vitamin K against oxidative injury. Vitamin K does not prevent the depletion of intracellular glutathione caused by cystine deprivation but completely blocks free radical accumulation and cell death. The protective and potent efficacy of this naturally occurring vitamin, with no established clinical side effects, suggests a potential therapeutic application in preventing oxidative damage to undifferentiated oligodendrocytes in perinatal hypoxic/ischemic brain injury.
- Subjects :
- Animals
Antioxidants pharmacology
Cell Death drug effects
Cells, Cultured
Cystine metabolism
Dose-Response Relationship, Drug
Glutathione metabolism
Neurons cytology
Neurons drug effects
Neuroprotective Agents metabolism
Neuroprotective Agents pharmacology
Oligodendroglia cytology
Oligodendroglia drug effects
Oxidative Stress drug effects
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species antagonists & inhibitors
Reactive Oxygen Species metabolism
Stem Cells cytology
Stem Cells drug effects
Stem Cells metabolism
Structure-Activity Relationship
Vitamin K 1 metabolism
Vitamin K 2 analogs & derivatives
Vitamin K 2 metabolism
gamma-Glutamylcyclotransferase metabolism
Neurons metabolism
Oligodendroglia metabolism
Oxidative Stress physiology
Vitamin K 1 pharmacology
Vitamin K 2 pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1529-2401
- Volume :
- 23
- Issue :
- 13
- Database :
- MEDLINE
- Journal :
- The Journal of neuroscience : the official journal of the Society for Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 12843286