Back to Search
Start Over
beta-Phenylpyruvate induces long-term neurobehavioral damage and brain necrosis in neonatal mice.
- Source :
-
Behavioural brain research [Behav Brain Res] 2003 Jul 14; Vol. 143 (1), pp. 1-5. - Publication Year :
- 2003
-
Abstract
- Administration of beta-phenylpyruvate at high concentrations reduces blood glucose levels and causes neurophysiological deterioration in insulin-deprived mice. We investigated whether beta-phenylpyruvate administration would cause long-term neurobehavioral and structural central neural damage in mice. Neonatal ICR mice were injected with beta-phenylpyruvate (0.5-2.5mg/g body weight (BW)) or saline (control). Blood glucose was measured. At 43 days of age, the animals were put on a 1-week regimen of restricted water supply, after which the mice were introduced into an eight-arm maze for evaluation of spatial-memory abilities (hippocampal-related behavior). Times for visiting all eight arms and number of entries until completion of the eight-arm visits (maze criteria) were measured. The test was repeated once daily for 5 days. TUNEL assay was used for detection of brain apoptosis. beta-Phenylpyruvate-treated animals (except the 0.5mg/g group) developed hypoglycemia. Treated mice required more time to assimilate the maze structure. Mice treated with 2.5mg/g beta-phenylpyruvate did not meet the maze criteria as compared with control (P<0.001) and suffered from necrotic changes in the hippocampal regions. The above-mentioned neurobehavioral damage was abrogated by coadministration of glucose. We conclude that beta-phenylpyruvate is able to produce necrotic neural damage accompanied by structurally related neurobehavioral dysfunction. Together with its hypoglycemic effect, these findings may explain the neurodegenerative process that occurs in phenylketonuria (PKU), insofar as beta-phenylpyruvate is a metabolite of phenylalanine known to accumulate in vast amounts in this inherited disorder.
- Subjects :
- Animals
Animals, Newborn
Apoptosis drug effects
Blood Glucose drug effects
Dose-Response Relationship, Drug
Hypoglycemia chemically induced
In Situ Nick-End Labeling
Mice
Mice, Inbred ICR
Necrosis
Nerve Degeneration chemically induced
Nerve Degeneration physiopathology
Neurons pathology
Hippocampus pathology
Maze Learning drug effects
Phenylpyruvic Acids pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 0166-4328
- Volume :
- 143
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Behavioural brain research
- Publication Type :
- Academic Journal
- Accession number :
- 12842290
- Full Text :
- https://doi.org/10.1016/s0166-4328(03)00075-5