Back to Search Start Over

Nuclear transport by laser-induced pressure transients.

Authors :
Lin TY
McAuliffe DJ
Michaud N
Zhang H
Lee S
Doukas AG
Flotte TJ
Source :
Pharmaceutical research [Pharm Res] 2003 Jun; Vol. 20 (6), pp. 879-83.
Publication Year :
2003

Abstract

Purpose: Control of the transport of molecules into the nucleus represents a key regulatory mechanism for differentiation, transformation, and signal transduction. Permeabilization of the nuclear envelope by physical methods can have applications in gene therapy. Laser-induced pressure transients can produce temporary aqueous pores analogous to those produced by electroporation and that the cells can survive this procedure. In this study, we examine the role of the pressure transients in creating similar pores in the nuclear envelope.<br />Methods: The target human peripheral blood mononuclear cells in a 62 microM 72 kDa fluoresceinated dextran solution were exposed to the pressure transients generated by laser ablation. An in vitro fluorescence confocal microscope was used to visualize and quantify the fluoresceinated dextran in the cytoplasmic and nuclear compartments.<br />Results: In contrast to electroporation, the pressure transients could deliver 72 kDa fluoresceinated dextrans, which are normally excluded by the nucleus, across the nuclear envelope into the nucleus. In addition to creating pores in the plasma membrane, temporary pores were also created in the nuclear envelope following exposure to pressure transients.<br />Conclusion: The production of temporary nuclear pores could provide a unique resource for drug-delivery and gene therapy.

Details

Language :
English
ISSN :
0724-8741
Volume :
20
Issue :
6
Database :
MEDLINE
Journal :
Pharmaceutical research
Publication Type :
Academic Journal
Accession number :
12817891
Full Text :
https://doi.org/10.1023/a:1023835219041