Back to Search Start Over

Dopamine modulates synaptic transmission between rat olfactory bulb neurons in culture.

Authors :
Davila NG
Blakemore LJ
Trombley PQ
Source :
Journal of neurophysiology [J Neurophysiol] 2003 Jul; Vol. 90 (1), pp. 395-404. Date of Electronic Publication: 2003 Feb 26.
Publication Year :
2003

Abstract

The glomerular layer of the olfactory bulb (OB) contains synaptic connections between olfactory sensory neurons and OB neurons as well as connections among OB neurons. A subpopulation of external tufted cells and periglomerular cells (juxtaglomerular neurons) expresses dopamine, and recent reports suggest that dopamine can inhibit olfactory sensory neuron activation of OB neurons. In this study, whole cell electrophysiological and primary culture techniques were employed to characterize the neuromodulatory properties of dopamine on glutamatergic transmission between rat OB mitral/tufted (M/T) cells and interneurons. Immunocytochemical analysis confirmed the expression of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, in a subpopulation of cultured neurons. D2 receptor immunoreactivity was also observed in cultured M/T cells. Dopamine reduced spontaneous excitatory synaptic events recorded in interneurons. Although the D1 receptor agonist SKF38393 and the D2 receptor agonist bromocriptine mesylate mimicked this effect, evoked excitatory postsynaptic potentials (EPSPs) recorded from monosynaptically coupled neuron pairs were attenuated by dopamine and bromocriptine but not by SKF38393. Neither glutamate-evoked currents nor the membrane resistance of the postsynaptic interneuron were affected by dopamine. However, evoked calcium channel currents in the presynaptic M/T cell were diminished during the application of either dopamine or bromocriptine, but not SKF38393. Dopamine suppressed calcium channel currents even after nifedipine blockade of L-type channels, suggesting that inhibition of the dihydropyridine-resistant high-voltage activated calcium channels implicated in transmitter release may mediate dopamine's effects on spontaneous and evoked synaptic transmission. Together, these data suggest that dopamine inhibits excitatory neurotransmission between M/T cells and interneurons via a presynaptic mechanism.

Details

Language :
English
ISSN :
0022-3077
Volume :
90
Issue :
1
Database :
MEDLINE
Journal :
Journal of neurophysiology
Publication Type :
Academic Journal
Accession number :
12611989
Full Text :
https://doi.org/10.1152/jn.01058.2002