Back to Search Start Over

Automated segmentation of multispectral brain MR images.

Authors :
Andersen AH
Zhang Z
Avison MJ
Gash DM
Source :
Journal of neuroscience methods [J Neurosci Methods] 2002 Dec 31; Vol. 122 (1), pp. 13-23.
Publication Year :
2002

Abstract

This work presents a robust and comprehensive approach for the in vivo automated segmentation and quantitative tissue volume measurement of normal brain composition from multispectral magnetic resonance imaging (MRI) data. Statistical pattern recognition methods based on a finite mixture model are used to partition the intracranial volume into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) spaces. A masking algorithm initially extracts the brain volume from surrounding extrameningeal tissue. Radio frequency (RF) field inhomogeneity effects in the images are then removed using a recursive method that adapts to the intrinsic local tissue contrast. Our technique supports heterogeneous data with multispectral MR images of different contrast and intensity weighting acquired at varying spatial resolution and orientation. The proposed image segmentation methods have been tested using multispectral T1-, proton density-, and T2-weighted MRI data from young and aged non-human primates as well as from human subjects.

Details

Language :
English
ISSN :
0165-0270
Volume :
122
Issue :
1
Database :
MEDLINE
Journal :
Journal of neuroscience methods
Publication Type :
Academic Journal
Accession number :
12535761
Full Text :
https://doi.org/10.1016/s0165-0270(02)00273-x