Back to Search
Start Over
Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study.
- Source :
-
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2003 Jan 01; Vol. 23 (1), pp. 308-16. - Publication Year :
- 2003
-
Abstract
- Several functional maps have been described in primary auditory cortex, including those related to frequency, tuning, latency, binaurality, and intensity. Many of these maps are arranged in a discontinuous or patchy manner. Similarly, thalamocortical projections arising from the ventral division of the medial geniculate body to the primary auditory cortex are also patchy. We used anterograde labeling and electrophysiological methods to examine the relationship between thalamocortical patches and auditory cortical maps. Biotinylated dextran-amine was deposited into physiologically characterized sites in the ventral division of the medial geniculate body of New Zealand white rabbits. Approximately 7 d later, the animal was again anesthetized and the ipsilateral auditory cortex was mapped with tungsten microelectrodes. Multi-unit physiological data were obtained for the following characteristics: best frequency (BF), binaurality, response type, latency, sharpness of tuning, and threshold. Immunocytochemical methods were used to reveal the injection site in the ventral division of the medial geniculate body as well as the anterogradely labeled thalamocortical afferents in the auditory cortex. In 86% of the cases (12 of 14), entry into a thalamocortical patch was associated with a marked change in physiological responses. A consistent BF and binaural class were usually observed within a patch. The patches appear to innervate distinct functional regions coding frequency and binaurality. A model is presented showing how patchy thalamocortical projections participate in the formation of tonotopic and binaural maps in primary auditory cortex.
- Subjects :
- Animals
Biological Transport
Biotin metabolism
Brain Mapping
Dextrans metabolism
Geniculate Bodies metabolism
Models, Neurological
Presynaptic Terminals metabolism
Rabbits
Rats
Species Specificity
Auditory Cortex anatomy & histology
Auditory Cortex physiology
Auditory Pathways
Auditory Perception
Biotin analogs & derivatives
Geniculate Bodies cytology
Subjects
Details
- Language :
- English
- ISSN :
- 1529-2401
- Volume :
- 23
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- The Journal of neuroscience : the official journal of the Society for Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 12514229