Back to Search
Start Over
The superoxide-generating NADPH oxidase: structural aspects and activation mechanism.
- Source :
-
Cellular and molecular life sciences : CMLS [Cell Mol Life Sci] 2002 Sep; Vol. 59 (9), pp. 1428-59. - Publication Year :
- 2002
-
Abstract
- Flavocytochrome b558 is the catalytic core of the respiratory-burst oxidase, an enzyme complex that catalyzes the NADPH-dependent reduction of O2 into the superoxide anion O2 in phagocytic cells. Flavocytochrome b558 is anchored in the plasma membrane. It is a heterodimer that consists of a large glycoprotein gp91phox (phox forphagocyte oxidase) (beta subunit) and a small protein p22phox (alpha subunit). The other components of the respiratory-burst oxidase are water-soluble proteins of cytosolic origin, namely p67phox, p47phox, p40phox and Rac. Upon cell stimulation, they assemble with the membrane-bound flavocytochrome b558 which becomes activated and generates O2-. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections, illustrating the role of O2- and the derived metabolites H2O2 and HOCl in host defense against invading microorganisms. The electron carriers, FAD and hemes b, and the binding site for NADPH are confined to the gp91phox subunit of flavocytochrome b558. The p22phox subunit serves as a docking site for the cytoso lic phox proteins. This review provides an overview of current knowledge on the structural organization of the O2(-)-generating flavocytochrome b558, its kinetics, its mechanism of activation and the regulation of its biosynthesis. Homologues of gp91phox, called Nox and Duox, are present in a large variety of non-phagocytic cells. They exhibit modest O2(-)-generating oxidase activity, and some act as proton channels. Their role in various aspects of signal transduction is currently under investigation and is briefly discussed.
- Subjects :
- Amino Acid Sequence
Animals
Binding Sites
Cytochrome b Group genetics
Electron Transport physiology
Enzyme Activation
Humans
Molecular Sequence Data
NADPH Oxidases genetics
Neutrophils enzymology
Phosphoproteins genetics
Phosphoproteins metabolism
Protein Processing, Post-Translational
Protein Structure, Secondary
Protein Subunits
Structure-Activity Relationship
rac GTP-Binding Proteins metabolism
rap1 GTP-Binding Proteins metabolism
Cytochrome b Group chemistry
Cytochrome b Group metabolism
NADPH Oxidases chemistry
NADPH Oxidases metabolism
Superoxides metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1420-682X
- Volume :
- 59
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Cellular and molecular life sciences : CMLS
- Publication Type :
- Academic Journal
- Accession number :
- 12440767
- Full Text :
- https://doi.org/10.1007/s00018-002-8520-9