Back to Search Start Over

Activation of extracellular-regulated kinase by 5-hydroxytryptamine(2A) receptors in PC12 cells is protein kinase C-independent and requires calmodulin and tyrosine kinases.

Authors :
Quinn JC
Johnson-Farley NN
Yoon J
Cowen DS
Source :
The Journal of pharmacology and experimental therapeutics [J Pharmacol Exp Ther] 2002 Nov; Vol. 303 (2), pp. 746-52.
Publication Year :
2002

Abstract

5-Hydroxytryptamine (5-HT)(2A) receptors have been implicated to play a role in both the treatment and pathophysiology of a number of psychiatric disorders. Therefore, the coupling of this receptor to signals, such as extracellular signal-regulated kinase (ERK), that elicit long-term neuronal changes may be relevant. In the present study we examined the coupling of the G(q)-coupled receptor to ERK in PC12 cells, a cell line commonly used as a neuronal model system. Activation of ERK occurred through a pathway different than the protein kinase C-dependent pathways described previously in studies of non-neuronal cells. Activation of ERK, in PC12 cells, was inhibited by both chelation of extracellular Ca(2+) and by depletion of intracellular Ca(2+) stores. Surprisingly, activation was not inhibited, but actually potentiated, by a variety of protein kinase C inhibitors covering all known protein kinase C isoforms. In contrast, the coupling of receptor to activation of ERK was found to be sensitive to N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7) and N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide (W13), inhibitors of calmodulin, but not to 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine (KN62) and 2-[N-(2-hydroxyethyl)]-N-4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) (KN93), inhibitors of calmodulin-dependent protein kinase. Additionally, the general tyrosine kinase inhibitor genistein, as well as the Src inhibitor PP1 and the epidermal growth factor receptor kinase inhibitor 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG 1478), inhibited receptor-mediated activation of ERK, suggesting a role for tyrosine kinases. In fact, 5-HT was found to stimulate tyrosine phosphorylation of a number of proteins, and this phosphorylation was inhibited by W7. 5-HT(2A) receptor-activation of ERK through a protein kinase C-independent pathway requiring Ca(2+)/calmodulin/tyrosine kinases represents a pathway distinct from those described in studies of non-neuronal cells.

Details

Language :
English
ISSN :
0022-3565
Volume :
303
Issue :
2
Database :
MEDLINE
Journal :
The Journal of pharmacology and experimental therapeutics
Publication Type :
Academic Journal
Accession number :
12388661
Full Text :
https://doi.org/10.1124/jpet.102.038083