Back to Search
Start Over
Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice.
- Source :
-
Circulation [Circulation] 2002 Oct 15; Vol. 106 (16), pp. 2125-31. - Publication Year :
- 2002
-
Abstract
- Background: Increased rates of glucose uptake and glycolysis have been repeatedly observed in cardiac hypertrophy and failure. Although these changes have been considered part of the fetal gene reactivation program, the functional significance of increased glucose utilization in hypertrophied and failing myocardium is poorly understood.<br />Methods and Results: We generated transgenic (TG) mice with cardiac-specific overexpression of insulin-independent glucose transporter GLUT1 to recapitulate the increases in basal glucose uptake rate observed in hypertrophied hearts. Isolated perfused TG hearts showed a greater rate of basal glucose uptake and glycolysis than hearts isolated from wild-type littermates, which persisted after pressure overload by ascending aortic constriction (AAC). The in vivo cardiac function in TG mice, assessed by echocardiography, was unaltered. When subjected to AAC, wild-type mice exhibited a progressive decline in left ventricular (LV) fractional shortening accompanied by ventricular dilation and decreased phosphocreatine to ATP ratio and reached a mortality rate of 40% at 8 weeks. In contrast, TG-AAC mice maintained LV function and phosphocreatine to ATP ratio and had <10% mortality.<br />Conclusions: We found that increasing insulin-independent glucose uptake and glycolysis in adult hearts does not compromise cardiac function. Furthermore, we demonstrate that increasing glucose utilization in hypertrophied hearts protects against contractile dysfunction and LV dilation after chronic pressure overload.
- Subjects :
- Adenosine Triphosphate analysis
Animals
Aorta
Biological Transport
Constriction
Echocardiography
Glucose metabolism
Glucose Transporter Type 1
Heart Failure etiology
Heart Failure metabolism
Heart Failure pathology
Humans
Hypertrophy, Left Ventricular complications
Mice
Mice, Transgenic
Monosaccharide Transport Proteins metabolism
Myocardial Contraction
Myocardium pathology
Organ Culture Techniques
Phosphocreatine analysis
Pressure
Survival Analysis
Ventricular Remodeling
Heart Failure prevention & control
Monosaccharide Transport Proteins genetics
Myocardium metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1524-4539
- Volume :
- 106
- Issue :
- 16
- Database :
- MEDLINE
- Journal :
- Circulation
- Publication Type :
- Academic Journal
- Accession number :
- 12379584
- Full Text :
- https://doi.org/10.1161/01.cir.0000034049.61181.f3