Back to Search Start Over

Guanylyl cyclase-A inhibits angiotensin II type 1A receptor-mediated cardiac remodeling, an endogenous protective mechanism in the heart.

Authors :
Li Y
Kishimoto I
Saito Y
Harada M
Kuwahara K
Izumi T
Takahashi N
Kawakami R
Tanimoto K
Nakagawa Y
Nakanishi M
Adachi Y
Garbers DL
Fukamizu A
Nakao K
Source :
Circulation [Circulation] 2002 Sep 24; Vol. 106 (13), pp. 1722-8.
Publication Year :
2002

Abstract

Background: Guanylyl cyclase (GC)-A, a natriuretic peptide receptor, lowers blood pressure and inhibits the growth of cardiac myocytes and fibroblasts. Angiotensin II (Ang II) type 1A (AT1A), an Ang II receptor, regulates cardiovascular homeostasis oppositely. Disruption of GC-A induces cardiac hypertrophy and fibrosis, suggesting that GC-A protects the heart from abnormal remodeling. We investigated whether GC-A interacts with AT1A signaling in the heart by target deletion and pharmacological blockade or stimulation of AT1A in mice.<br />Methods and Results: We generated double-knockout (KO) mice for GC-A and AT1A by crossing GC-A-KO mice and AT1A-KO mice and blocked AT1 with a selective antagonist, CS-866. The cardiac hypertrophy and fibrosis of GC-A-KO mice were greatly improved by deletion or pharmacological blockade of AT1A. Overexpression of mRNAs encoding atrial natriuretic peptide, brain natriuretic peptide, collagens I and III, transforming growth factors beta1 and beta3, were also strongly inhibited. Furthermore, stimulation of AT1A by exogenous Ang II at a subpressor dose significantly exacerbated cardiac hypertrophy and dramatically augmented interstitial fibrosis in GC-A-KO mice but not in wild-type animals.<br />Conclusions: These results suggest that cardiac hypertrophy and fibrosis of GC-A-deficient mice are partially ascribed to an augmented cardiac AT1A signaling and that GC-A inhibits AT1A signaling-mediated excessive remodeling.

Subjects

Subjects :
Angiotensin II pharmacology
Angiotensin Receptor Antagonists
Angiotensinogen biosynthesis
Angiotensinogen genetics
Animals
Atrial Natriuretic Factor biosynthesis
Atrial Natriuretic Factor genetics
Blood Pressure drug effects
Blood Pressure physiology
Body Weight drug effects
Body Weight physiology
Cardiomegaly genetics
Cardiomegaly pathology
Cardiomegaly prevention & control
Collagen biosynthesis
Collagen genetics
Fibrosis genetics
Fibrosis pathology
Fibrosis prevention & control
Gene Targeting
Guanylate Cyclase deficiency
Guanylate Cyclase genetics
Heart Rate physiology
Heart Ventricles drug effects
Heart Ventricles metabolism
Heart Ventricles pathology
Hypertension genetics
Hypertension prevention & control
Imidazoles pharmacology
Mice
Mice, Knockout
Myocardium pathology
Natriuretic Peptide, Brain biosynthesis
Natriuretic Peptide, Brain genetics
Olmesartan Medoxomil
Organ Size drug effects
Organ Size physiology
Peptidyl-Dipeptidase A biosynthesis
Peptidyl-Dipeptidase A genetics
RNA, Messenger biosynthesis
Receptor, Angiotensin, Type 1
Receptors, Angiotensin deficiency
Receptors, Angiotensin genetics
Receptors, Atrial Natriuretic Factor deficiency
Receptors, Atrial Natriuretic Factor genetics
Tetrazoles pharmacology
Transforming Growth Factor beta biosynthesis
Transforming Growth Factor beta genetics
Transforming Growth Factor beta1
Transforming Growth Factor beta2
Ventricular Remodeling drug effects
Ventricular Remodeling genetics
Guanylate Cyclase metabolism
Myocardium metabolism
Receptors, Angiotensin metabolism
Receptors, Atrial Natriuretic Factor metabolism
Ventricular Remodeling physiology

Details

Language :
English
ISSN :
1524-4539
Volume :
106
Issue :
13
Database :
MEDLINE
Journal :
Circulation
Publication Type :
Academic Journal
Accession number :
12270869
Full Text :
https://doi.org/10.1161/01.cir.0000029923.57048.61