Back to Search
Start Over
The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
- Source :
-
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society [IEEE Trans Neural Syst Rehabil Eng] 2002 Jun; Vol. 10 (2), pp. 85-93. - Publication Year :
- 2002
-
Abstract
- Stimulation patterns can be optimized by maximizing the force-time integral (FTI) per stimulation pulse of the elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator may, therefore, be improved. Although muscle operates over a range of lengths, optimized patterns have been determined only at optimal muscle length. In this study, the patterns with up to four pulses that produced the highest isometric FTI were determined at 10 muscle lengths for 11 rabbit tibialis anterior muscles. The interpulse intervals (IPIs) used ranged from 4 to 54 ms. At high muscle length, the optimal stimulation pattern consisted of an initial short IPI (doublet) followed by longer IPIs, in agreement with previous studies. However, at low length, the third pulse still elicited more than linear summation (triplet); furthermore, the relative enhancement of the FTI per pulse was considerably larger at low length than at high length, suggesting that optimal stimulation patterns are length dependent.
Details
- Language :
- English
- ISSN :
- 1534-4320
- Volume :
- 10
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
- Publication Type :
- Academic Journal
- Accession number :
- 12236451
- Full Text :
- https://doi.org/10.1109/TNSRE.2002.1031976