Back to Search Start Over

The reduction potential of nitric oxide (NO) and its importance to NO biochemistry.

Authors :
Bartberger MD
Liu W
Ford E
Miranda KM
Switzer C
Fukuto JM
Farmer PJ
Wink DA
Houk KN
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2002 Aug 20; Vol. 99 (17), pp. 10958-63. Date of Electronic Publication: 2002 Aug 12.
Publication Year :
2002

Abstract

A potential of about -0.8 (+/-0.2) V (at 1 M versus normal hydrogen electrode) for the reduction of nitric oxide (NO) to its one-electron reduced species, nitroxyl anion (3NO-) has been determined by a combination of quantum mechanical calculations, cyclic voltammetry measurements, and chemical reduction experiments. This value is in accord with some, but not the most commonly accepted, previous electrochemical measurements involving NO. Reduction of NO to 1NO- is highly unfavorable, with a predicted reduction potential of about -1.7 (+/-0.2) V at 1 M versus normal hydrogen electrode. These results represent a substantial revision of the derived and widely cited values of +0.39 V and -0.35 V for the NO/3NO- and NO/1NO- couples, respectively, and provide support for previous measurements obtained by electrochemical and photoelectrochemical means. With such highly negative reduction potentials, NO is inert to reduction compared with physiological events that reduce molecular oxygen to superoxide. From these reduction potentials, the pKa of 3NO- has been reevaluated as 11.6 (+/-3.4). Thus, nitroxyl exists almost exclusively in its protonated form, HNO, under physiological conditions. The singlet state of nitroxyl anion, 1NO-, is physiologically inaccessible. The significance of these potentials to physiological and pathophysiological processes involving NO and O2 under reductive conditions is discussed.

Details

Language :
English
ISSN :
0027-8424
Volume :
99
Issue :
17
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
12177417
Full Text :
https://doi.org/10.1073/pnas.162095599