Back to Search
Start Over
In vivo evaluation of a bioactive scaffold for bone tissue engineering.
- Source :
-
Journal of biomedical materials research [J Biomed Mater Res] 2002 Oct; Vol. 62 (1), pp. 1-13. - Publication Year :
- 2002
-
Abstract
- Revision cases of total hip implants are complicated by the significant amount of bone loss. New materials and/or approaches are needed to provide stability to the site, stimulate bone formation, and ultimately lead to fully functional bone tissue. Porous bioactive glasses (prepared from 45S5 granules, 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5) have been developed as scaffolds for bone tissue engineering and have been studied in vitro. In this study, we investigated the incorporation of tissue-engineered constructs utilizing these scaffolds in large, cortical bone defects in the rat simulating revision conditions. With implantation times of 2, 4, and 12 weeks the results were compared to those using the bioactive ceramic scaffold alone. Two tissue-engineered constructs were studied: osteoprogenitor cells that were either seeded onto the scaffold prior to implantation ("primary") or those that were culture expanded to form bonelike tissue on the scaffold prior to implantation ("hybrid"). Defects treated with the hybrid had the greatest amount of bone in the available pore space of the defect over all other groups at 2 weeks (p < 0.05). For both the primary and hybrid groups, woven and lamellar bone was present along the interface of the scaffold and the host cortex and within the porous space of the scaffold at 2 weeks. By 4 weeks, very uniform, lamellar bone was present throughout the scaffold for both tissue-engineered groups. The amount of bone significantly increased over time for all groups while the bioactive ceramic gradually resorbed by 40% at 12 weeks (p < 0.05). Structural properties of the treated long bones improved over time. Long bones treated with the hybrid had an early return in torsional stiffness by 2 weeks. Both tissue-engineered constructs achieved normal torsional strength and stiffness by 4 weeks as compared to the scaffold alone, which achieved this by 12 weeks. Porous, surface modified bioactive ceramic is a promising scaffold material for tissue-engineered bone repair.<br /> (Copyright 2002 Wiley Periodicals, Inc.)
- Subjects :
- Animals
Biodegradation, Environmental
Bone Marrow Cells
Bone Regeneration
Ceramics therapeutic use
Femur cytology
Femur surgery
Glass
Male
Pliability
Porosity
Rats
Rats, Inbred F344
Stromal Cells cytology
Stromal Cells transplantation
Torque
Biocompatible Materials standards
Osseointegration
Tissue Engineering methods
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9304
- Volume :
- 62
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of biomedical materials research
- Publication Type :
- Academic Journal
- Accession number :
- 12124781
- Full Text :
- https://doi.org/10.1002/jbm.10157