Back to Search Start Over

Reduced (+/-)-3,4-methylenedioxymethamphetamine ("Ecstasy") metabolism with cytochrome P450 2D6 inhibitors and pharmacogenetic variants in vitro.

Authors :
Ramamoorthy Y
Yu AM
Suh N
Haining RL
Tyndale RF
Sellers EM
Source :
Biochemical pharmacology [Biochem Pharmacol] 2002 Jun 15; Vol. 63 (12), pp. 2111-9.
Publication Year :
2002

Abstract

"Ecstasy" [(+/-)-3,4-methylenedioxymethamphetamine or MDMA] is a CNS stimulant, whose use is increasing despite evidence of long-term neurotoxicity. In vitro, the majority of MDMA is demethylenated to (+/-)-3,4-dihydroxymethamphetamine (DHMA) by the polymorphic cytochrome P450 2D6 (CYP2D6). We investigated the demethylenation of MDMA and dextromethorphan (DEX), as a comparison drug, in reconstituted microsomes expressing the variant CYP2D6 alleles (*)2, (*)10, and (*)17, all of which have been linked to decreased enzyme activity. With MDMA, intrinsic clearances (V(max)/K(m)) in CYP2D6.2, CYP2D6.17, and CYP2D6.10 were reduced 15-, 13-, and 135-fold, respectively, compared with wild-type CYP2D6.1. With DEX, intrinsic clearances were reduced by 37-, 51-, and 164-fold, respectively. It was evident that CYP2D6.17 displayed substrate-specific changes in drug affinity (K(m)). Compounds potentially used with MDMA [fluoxetine, paroxetine, (-)-cocaine] demonstrated significant inhibition of MDMA metabolism in both human liver and CYP2D6.1-expressing microsomes. These data demonstrate that individuals possessing the CYP2D6(*)2, (*)17, and, particularly, (*)10 alleles may show significantly reduced MDMA metabolism. These individuals, and those taking CYP2D6 inhibitors, may demonstrate altered acute and/or long-term MDMA-related toxicity.

Details

Language :
English
ISSN :
0006-2952
Volume :
63
Issue :
12
Database :
MEDLINE
Journal :
Biochemical pharmacology
Publication Type :
Academic Journal
Accession number :
12110370
Full Text :
https://doi.org/10.1016/s0006-2952(02)01028-6