Back to Search
Start Over
Suppression of DTT-induced aggregation of abrin by alphaA- and alphaB-crystallins: a model aggregation assay for alpha-crystallin chaperone activity in vitro.
- Source :
-
FEBS letters [FEBS Lett] 2002 Jul 03; Vol. 522 (1-3), pp. 59-64. - Publication Year :
- 2002
-
Abstract
- The eye lens small heat shock proteins (sHSP), alphaA- and alphaB-crystallins, have been shown to function like molecular chaperones, both in vitro and in vivo. It is essential to assess the protective effect of alphaA- and alphaB-crystallins under native conditions to extrapolate the results to in vivo conditions. Insulin and alpha-lactalbumin have widely been used to investigate the chaperone mechanism of alpha-crystallin under native conditions. Due to its smaller size, insulin B-chain may not represent the binding of putative physiological substrate proteins. As it stands, the aggregation of alpha-lactalbumin and binding of alpha-crystallin to it varies under different experimental conditions. Abrin, a ribosome inactivating protein isolated from the seeds of Abrus precatorius, consists of a 30 kDa A-chain and a lectin-like B-chain of 33 kDa joined by a single disulfide bond. Reduction of the disulfide link between the two chains of abrin leads to the aggregation of the B-chain. In this study, we demonstrate that dithiothreitol (DTT)-induced aggregation of abrin B-chain could be monitored by light scattering similar to that of insulin. Moreso, this process could be suppressed by recombinant human alphaA- and alphaB-crystallins in a concentration dependent manner, notably by binding to aggregation prone abrin B-chain. SDS-PAGE and HPLC gel filtration analysis indicate that there is a soluble complex formation between alpha-crystallin and abrin B-chain. Interestingly, in contrast to insulin, there is no significant difference between alphaA- and alphaB-crystallin in suppressing the aggregation of abrin B-chain at two different temperatures (25 and 37 degrees C). HSP26, an another small heat shock/alpha-crystallin family protein, was also able to prevent the DTT-induced aggregation of abrin. These results suggest that due to relatively larger size of its B-chain (33 kDa), compared to insulin B-chain (about 3 kDa), abrin may serve as a better model substrate for in vitro chaperone studies of alpha-crystallin and as well as other sHSP.
Details
- Language :
- English
- ISSN :
- 0014-5793
- Volume :
- 522
- Issue :
- 1-3
- Database :
- MEDLINE
- Journal :
- FEBS letters
- Publication Type :
- Academic Journal
- Accession number :
- 12095619
- Full Text :
- https://doi.org/10.1016/s0014-5793(02)02884-3