Back to Search Start Over

Differential regulation of Ca(2+)-dependent Cl- currents by FP prostanoid receptor isoforms in Xenopus oocytes.

Authors :
Anthony TL
Fujino H
Pierce KL
Yool AJ
Regan JW
Source :
Biochemical pharmacology [Biochem Pharmacol] 2002 May 15; Vol. 63 (10), pp. 1797-806.
Publication Year :
2002

Abstract

The FP(A) and FP(B) prostanoid receptor isoforms are G-protein-coupled receptors that are activated by prostaglandin F(2alpha) (PGF(2alpha)). Differences in their carboxyl termini prompted us to examine the intracellular calcium (Ca(2+)) signaling of these receptor isoforms using the Xenopus oocyte expression system. Protein expression was determined by immunofluorescence microscopy and whole cell binding with [3H]PGF(2alpha). Positive immunolabeling was observed on the outer membranes of oocytes expressing FLAG-tagged FP receptor isoforms, but not on control (water-injected) oocytes. Intracellular signaling was examined using a two-electrode voltage clamp. Specific whole-cell binding was also detected for both receptor isoforms. Bath application of 10 microM PGF(2alpha) to FP(A)-expressing oocytes produced a chloride (Cl-) current response similar to that of an injection of inositol 1,4,5-trisphosphate (InsP(3)) (5.76+/-0.6 microA, peak current; N=23) that returned to control levels within 25 min. In FP(B)-expressing oocytes the activation of the Cl- current was delayed or completely absent (1.38+/-0.2 microA, peak current; N=18). Control oocytes were not responsive to the application of PGF(2alpha) (0.87+/-0.1 microA, peak current; N=10). Activation of Cl- currents for both FP receptor isoforms was dependent upon intracellular Ca(2+) stores as a 30-min pretreatment with thapsigargin (1 microM; N=5) blocked the PGF(2alpha) induction of the Cl- current. These data indicate that the FP prostanoid receptor isoforms differ in their ability to activate Ca(2+)-dependent Cl- channels when expressed in Xenopus oocytes. The difference appears to be in the ability of the two FP prostanoid receptor isoforms to mobilize intracellular calcium.

Details

Language :
English
ISSN :
0006-2952
Volume :
63
Issue :
10
Database :
MEDLINE
Journal :
Biochemical pharmacology
Publication Type :
Academic Journal
Accession number :
12034364
Full Text :
https://doi.org/10.1016/s0006-2952(02)00953-x