Back to Search Start Over

Similar perisynaptic glial localization for the Na+,K+-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex.

Authors :
Cholet N
Pellerin L
Magistretti PJ
Hamel E
Source :
Cerebral cortex (New York, N.Y. : 1991) [Cereb Cortex] 2002 May; Vol. 12 (5), pp. 515-25.
Publication Year :
2002

Abstract

Several isoenzymes of the Na(+),K(+)-ATPase are expressed in brain but their specific roles are poorly understood. Recently, it was suggested that an isoenzyme of the Na(+),K(+)-ATPase containing the alpha(2) subunit, together with the glutamate transporters GLAST and GLT-1, participate in a coupling mechanism between neuronal activity and energy metabolism taking place in astrocytes. To substantiate this hypothesis, we compared the distribution of alpha(2), GLAST and/or GLT-1 in the rat cerebral cortex using double immunofluorescence and confocal microscopy, and immunocytochemistry at the electron microscopic level. We also investigated the relationship between alpha(2), GLAST or GLT-1 and asymmetrical synaptic junctions (largely glutamatergic) and GABAergic nerve terminals. Results show that the alpha(2) subunit has an exclusive astroglial localization, and that it is almost completely co-distributed with GLAST and GLT-1 when evaluated by confocal microscopy. This similar distribution was confirmed at the ultrastructural level, which further showed that the vast majority of the alpha(2) staining (73% of all labelled elements), like that of GLAST and GLT-1, was located in glial leaflets surrounding dendritic spines and the dendritic and/or axonal elements of asymmetrical (glutamatergic) axo-dendritic synapses. Synapses ensheathed by alpha(2), GLAST or GLT-1 virtually never included (<or=2%) GABAergic nerve terminals or synaptic junctions. However, a subset of GABAergic nerve terminals (10-14%) were directly apposed to asymmetrical axo-dendritic junctions surrounded by alpha(2), GLAST or GLT-1. Altogether these results demonstrate that alpha(2), GLAST and GLT-1 have comparable perisynaptic distribution within cortical astrocytes most likely associated with glutamatergic synapses.

Details

Language :
English
ISSN :
1047-3211
Volume :
12
Issue :
5
Database :
MEDLINE
Journal :
Cerebral cortex (New York, N.Y. : 1991)
Publication Type :
Academic Journal
Accession number :
11950769
Full Text :
https://doi.org/10.1093/cercor/12.5.515