Back to Search
Start Over
Solution structure of the unbound, oxidized Photosystem I subunit PsaC, containing [4Fe-4S] clusters F(A) and F(B): a conformational change occurs upon binding to photosystem I.
- Source :
-
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry [J Biol Inorg Chem] 2002 Apr; Vol. 7 (4-5), pp. 461-72. Date of Electronic Publication: 2002 Jan 11. - Publication Year :
- 2002
-
Abstract
- This work presents the three-dimensional NMR solution structure of recombinant, oxidized, unbound PsaC from Synechococcus sp. PCC 7002. Constraints are derived from homo- and heteronuclear one-, two- and three-dimensional (1)H and (15)N NMR data. Significant differences are outlined between the unbound PsaC structure presented here and the available X-ray structure of bound PsaC as an integral part of the whole cyanobacterial PS I complex. These differences mainly concern the arrangement of the N- and C-termini with respect to the [4Fe-4S] core domain. In the NMR solution structure of PsaC the C-terminal region assumes a disordered helical conformation, and is clearly different from the extended coil conformation, which is one of the structural elements required to anchor PsaC to the PS I core heterodimer. In solution the N-terminus of PsaC is in contact with the pre-C-terminal region but slides in between the latter and the iron-sulfur core region of the protein. Together, these features result in a concerted movement of the N-terminus and pre-C-terminal region away from the F(A) binding site, accompanied by a bending of the N-terminus. In comparison, the same terminal regions are positioned much closer to F(A) and take up an anti-parallel beta-sheet arrangement in PsaC bound to PS I. The conformational changes between bound and unbound PsaC correlate with the differences reported earlier for the EPR spectra of reduced F(A) and F(B) in bound versus unbound PsaC. The observed different structural features in solution are highly relevant for unraveling the stepwise assembly process of the stromal PsaC, PsaD and PsaE subunits to the PS I core heterodimer. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0321-3.
- Subjects :
- Amino Acid Sequence
Iron-Sulfur Proteins metabolism
Magnetic Resonance Spectroscopy
Models, Molecular
Molecular Sequence Data
Oxidation-Reduction
Protein Conformation
Protein Subunits
Iron-Sulfur Proteins chemistry
Membrane Proteins
Photosynthetic Reaction Center Complex Proteins chemistry
Photosynthetic Reaction Center Complex Proteins metabolism
Photosystem I Protein Complex
Proteins chemistry
Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0949-8257
- Volume :
- 7
- Issue :
- 4-5
- Database :
- MEDLINE
- Journal :
- Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 11941504
- Full Text :
- https://doi.org/10.1007/s00775-001-0321-3