Back to Search Start Over

Nociceptin/orphanin FQ inhibits capsaicin-induced guinea-pig airway contraction through an inward-rectifier potassium channel.

Authors :
Jia Y
Wang X
Aponte SI
Rivelli MA
Yang R
Rizzo CA
Corboz MR
Priestley T
Hey JA
Source :
British journal of pharmacology [Br J Pharmacol] 2002 Feb; Vol. 135 (3), pp. 764-70.
Publication Year :
2002

Abstract

Nociceptin/orphanin FQ (N/OFQ), an endogenous opioid-like orphan receptor (NOP receptor, previously termed ORL1 receptor) agonist, has been found to inhibit capsaicin-induced bronchoconstriction in isolated guinea-pig lungs and in vivo. The underlying mechanisms are not clear. In the present studies, we tested the effect of N/OFQ on VR1 channel function in isolated guinea-pig nodose ganglia cells. Capsaicin increased intracellular Ca(2+) concentration in these cells through activation of vanilloid receptors. Capsaicin-induced Ca(2+) responses were attenuated by pretreatment of nodose neurons with N/OFQ (1 microM). N/OFQ inhibitory effect on the Ca(2+) response in nodose ganglia cells was antagonized by tertiapin (0.5 microM), an inhibitor of inward-rectifier K(+) channels, but not by verapamil, a voltage gated Ca(2+) channel blocker, indicating that an inward-rectifier K(+) channel is involved in N/OFQ inhibitory effect. In isolated guinea-pig bronchus, N/OFQ (1 microM) inhibited capsaicin-induced airway contraction. Tertiapin (0.5 microM) abolished the N/OFQ inhibition of capsaicin-induced bronchial contraction. Capsaicin (10 microg) increased pulmonary inflation pressure in the isolated perfused guinea-pig lungs. This response was significantly attenuated by pretreatment with N/OFQ (1 microM). Tertiapin also abolished the N/OFQ inhibitory effect on capsaicin-induced bronchoconstriction in perfused lungs. Capsaicin increased the release of substance P and neurokinin A from isolated lungs. N/OFQ (1 microM) blocked the capsaicin-induced tachykinin release. These results indicate that N/OFQ-induced hyperpolarization of tachykinin containing airway sensory nerves, through an inward-rectifier K(+) channel activation, accounts for the inhibition of capsaicin-evoked broncoconstriction.

Details

Language :
English
ISSN :
0007-1188
Volume :
135
Issue :
3
Database :
MEDLINE
Journal :
British journal of pharmacology
Publication Type :
Academic Journal
Accession number :
11834624
Full Text :
https://doi.org/10.1038/sj.bjp.0704515