Back to Search Start Over

Characterization of the signal transduction pathways mediating morphine withdrawal-stimulated c-fos expression in hypothalamic nuclei.

Authors :
Martínez PJ
Laorden ML
Cerezo M
Martínez-Piñero MG
Milanés MV
Source :
European journal of pharmacology [Eur J Pharmacol] 2001 Oct 26; Vol. 430 (1), pp. 59-68.
Publication Year :
2001

Abstract

The transcription factor, Fos, is considered as a functional marker of activated neurons. We have shown previously that acute administration of morphine induces the expression of Fos in hypothalamic nuclei associated with control of the hypothalamus-pituitary-adrenocortex axis, such as the paraventricular nucleus and the supraoptic nucleus. In the current study, we examined the role of protein kinase A, protein kinase C and Ca2+ entry through L-type Ca2+ channels in naloxone-precipitated Fos expression in the paraventricular and supraoptic nuclei. After 7 days of morphine treatment, we did not observe any modification in Fos production. However, when opioid withdrawal was precipitated with naloxone a dramatic increase in Fos immunoreactivity was observed in the parvocellular division of the paraventricular nucleus and in the supraoptic nucleus. Chronic co-administration of chelerythrine (a selective protein kinase C inhibitor acting at its catalytic domain) with morphine did not affect the increase in Fos expression observed in nuclei from morphine withdrawn rats. In addition, infusion of calphostin C (another protein kinase C inhibitor, which interacts with its regulatory domain) did not modify the morphine withdrawal-induced expression of Fos. In contrast, when the selective protein kinase A inhibitor, N-(2'guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), was infused it greatly diminished the increased Fos production observed in morphine-withdrawn rats. Furthermore, chronic infusion of the selective L-type Ca2+ channel antagonist, nimodipine, significantly inhibited the enhancement of Fos induction in the paraventricular and supraoptic nuclei from morphine-withdrawn animals. Taken together, these data might indicate that protein kinase A activity is necessary for the expression of Fos during morphine withdrawal and that an up-regulated Ca2+ system might contribute to the activation of Fos. The present findings suggest that protein kinase A and Ca2+ influx through L-type Ca2+ channels might contribute to the activation of neuroendocrine cells in the paraventricular and supraoptic nuclei.

Details

Language :
English
ISSN :
0014-2999
Volume :
430
Issue :
1
Database :
MEDLINE
Journal :
European journal of pharmacology
Publication Type :
Academic Journal
Accession number :
11698063
Full Text :
https://doi.org/10.1016/s0014-2999(01)01356-5