Back to Search
Start Over
8p12 stem cell myeloproliferative disorder: the FOP-fibroblast growth factor receptor 1 fusion protein of the t(6;8) translocation induces cell survival mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt/mTOR pathways.
- Source :
-
Molecular and cellular biology [Mol Cell Biol] 2001 Dec; Vol. 21 (23), pp. 8129-42. - Publication Year :
- 2001
-
Abstract
- The FOP-fibroblast growth factor receptor 1 (FGFR1) fusion protein is expressed as a consequence of a t(6;8) (q27;p12) translocation associated with a stem cell myeloproliferative disorder with lymphoma, myeloid hyperplasia and eosinophilia. In the present report, we show that the fusion of the leucine-rich N-terminal region of FOP to the catalytic domain of FGFR1 results in conversion of murine hematopoietic cell line Ba/F3 to factor-independent cell survival via an antiapoptotic effect. This survival effect is dependent upon the constitutive tyrosine phosphorylation of FOP-FGFR1. Phosphorylation of STAT1 and of STAT3, but not STAT5, is observed in cells expressing FOP-FGFR1. The survival function of FOP-FGFR1 is abrogated by mutation of the phospholipase C gamma binding site. Mitogen-activated protein kinase (MAPK) is also activated in FOP-FGFR1-expressing cells and confers cytokine-independent survival to hematopoietic cells. These results demonstrate that FOP-FGFR1 is capable of protecting cells from apoptosis by using the same effectors as the wild-type FGFR1. Furthermore, we show that FOP-FGFR1 phosphorylates phosphatidylinositol 3 (PI3)-kinase and AKT and that specific inhibitors of PI3-kinase impair its ability to promote cell survival. In addition, FOP-FGFR1-expressing cells show constitutive phosphorylation of the positive regulator of translation p70S6 kinase; this phosphorylation is inhibited by PI3-kinase and mTOR (mammalian target of rapamycin) inhibitors. These results indicate that translation control is important to mediate the cell survival effect induced by FOP-FGFR1. Finally, FOP-FGFR1 protects cells from apoptosis by survival signals including BCL2 overexpression and inactivation of caspase-9 activity. Elucidation of signaling events downstream of FOP-FGFR1 constitutive activation provides insight into the mechanism of leukemogenesis mediated by this oncogenic fusion protein.
- Subjects :
- Animals
Caspase 9
Caspase Inhibitors
Cell Line
Cell Survival drug effects
Chromosomes, Human, Pair 6 genetics
Chromosomes, Human, Pair 8 genetics
DNA-Binding Proteins metabolism
Enzyme Inhibitors pharmacology
Hematopoietic Stem Cells cytology
Hematopoietic Stem Cells drug effects
Humans
Isoenzymes metabolism
Mice
Mitogen-Activated Protein Kinases metabolism
Mutagenesis, Site-Directed
Myeloproliferative Disorders genetics
Oncogene Proteins, Fusion genetics
Oncogene Proteins, Fusion pharmacology
Phosphatidylinositol 3-Kinases metabolism
Phosphoinositide-3 Kinase Inhibitors
Phospholipase C gamma
Phosphorylation drug effects
Protein Kinases metabolism
Proto-Oncogene Proteins metabolism
Proto-Oncogene Proteins c-akt
Proto-Oncogene Proteins c-bcl-2 metabolism
Receptor, Fibroblast Growth Factor, Type 1
STAT1 Transcription Factor
STAT3 Transcription Factor
TOR Serine-Threonine Kinases
Trans-Activators metabolism
Transfection
Translocation, Genetic genetics
Type C Phospholipases metabolism
Hematopoietic Stem Cells metabolism
Leucine genetics
Myeloproliferative Disorders metabolism
Oncogene Proteins, Fusion metabolism
Protein Serine-Threonine Kinases
Receptor Protein-Tyrosine Kinases genetics
Receptors, Fibroblast Growth Factor genetics
Receptors, Fibroblast Growth Factor metabolism
Signal Transduction physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0270-7306
- Volume :
- 21
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- Molecular and cellular biology
- Publication Type :
- Academic Journal
- Accession number :
- 11689702
- Full Text :
- https://doi.org/10.1128/MCB.21.23.8129-8142.2001