Back to Search
Start Over
Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases.
- Source :
-
The Biochemical journal [Biochem J] 2001 Nov 01; Vol. 359 (Pt 3), pp. 507-16. - Publication Year :
- 2001
-
Abstract
- GSH-dependent prostaglandin D(2) synthase (PGDS) enzymes represent the only vertebrate members of class Sigma glutathione S-transferases (GSTs) identified to date. Complementary DNA clones encoding the orthologous human and rat GSH-dependent PGDS (hPGDS and rPGDS, respectively) have been expressed in Escherichia coli, and the recombinant proteins isolated by affinity chromatography. The purified enzymes were both shown to catalyse specifically the isomerization of prostaglandin (PG) H(2) to PGD(2). Each transferase also exhibited GSH-conjugating and GSH-peroxidase activities. The ability of hPGDS to catalyse the conjugation of aryl halides and isothiocyanates with GSH was found to be less than that of the rat enzyme. Whilst there is no difference between the enzymes with respect to their K(m) values for 1-chloro-2,4-dinitrobenzene, marked differences were found to exist with respect to their K(m) for GSH (8 mM versus 0.3 mM for hPGDS and rPGDS, respectively). Using molecular modelling techniques, amino acid substitutions have been identified in the N-terminal domain of these enzymes that lie outside the proposed GSH-binding site, which may explain these catalytic differences. The tissue-specific expression of PGDS also varies significantly between human and rat; amongst the tissues examined, variation in expression between the two species was most apparent in spleen and bone marrow. Differences in catalytic properties and tissue-specific expression of hPGDS and rPGDS appears to reflect distinct physiological roles for class Sigma GST between species. The evolution of divergent functions for the hPGDS and rPGDS is discussed in the context of the orthologous enzyme from chicken.
- Subjects :
- Amino Acid Sequence
Animals
Catalysis
Glutathione Transferase classification
Glutathione Transferase genetics
Humans
Intramolecular Oxidoreductases chemistry
Intramolecular Oxidoreductases genetics
Isoenzymes metabolism
Lipocalins
Models, Molecular
Molecular Sequence Data
Organ Specificity
Protein Conformation
Protein Structure, Tertiary
Rats
Rats, Wistar
Recombinant Proteins metabolism
Sequence Alignment
Glutathione Transferase metabolism
Intramolecular Oxidoreductases metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0264-6021
- Volume :
- 359
- Issue :
- Pt 3
- Database :
- MEDLINE
- Journal :
- The Biochemical journal
- Publication Type :
- Academic Journal
- Accession number :
- 11672424
- Full Text :
- https://doi.org/10.1042/0264-6021:3590507