Back to Search Start Over

Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation.

Authors :
Izzo AA
Fezza F
Capasso R
Bisogno T
Pinto L
Iuvone T
Esposito G
Mascolo N
Di Marzo V
Capasso F
Source :
British journal of pharmacology [Br J Pharmacol] 2001 Oct; Vol. 134 (3), pp. 563-70.
Publication Year :
2001

Abstract

1. We have studied the effect of cannabinoid agonists (CP 55,940 and cannabinol) on intestinal motility in a model of intestinal inflammation (induced by oral croton oil in mice) and measured cannabinoid receptor expression, endocannabinoids (anandamide and 2-arachidonylglycerol) and anandamide amidohydrolase activity both in physiological and pathophysiological states. 2. CP 55,940 (0.03 - 10 nmol mouse(-1)) and cannabinol (10 - 3000 nmol mouse(-1)) were more active in delaying intestinal motility in croton oil-treated mice than in control mice. These inhibitory effects were counteracted by the selective cannabinoid CB(1) receptor antagonist SR141716A (16 nmol mouse(-1)). SR141716A (1 - 300 nmol mouse(-1)), administered alone, increased intestinal motility to the same extent in both control and croton oil-treated mice. 3. Croton oil-induced intestinal inflammation was associated with an increased expression of CB(1) receptor, an unprecedented example of up-regulation of cannabinoid receptors during inflammation. 4. High levels of anandamide and 2-arachidonylglycerol were detected in the small intestine, although no differences were observed between control and croton oil-treated mice; by contrast anandamide amidohydrolase activity increased 2 fold in the inflamed small intestine. 5. It is concluded that inflammation of the gut increases the potency of cannabinoid agonists possibly by 'up-regulating' CB(1) receptor expression; in addition, endocannabinoids, whose turnover is increased in inflamed gut, might tonically inhibit intestinal motility.

Details

Language :
English
ISSN :
0007-1188
Volume :
134
Issue :
3
Database :
MEDLINE
Journal :
British journal of pharmacology
Publication Type :
Academic Journal
Accession number :
11588110
Full Text :
https://doi.org/10.1038/sj.bjp.0704293