Back to Search
Start Over
Cytochrome P4502B6 and 2C9 do not metabolize midazolam: kinetic analysis and inhibition study with monoclonal antibodies.
- Source :
-
British journal of anaesthesia [Br J Anaesth] 2001 Apr; Vol. 86 (4), pp. 540-4. - Publication Year :
- 2001
-
Abstract
- We determined the contribution of cytochrome P450 (CYP) isoforms to the metabolism of midazolam by kinetic analysis of human liver microsomes and CYP isoforms and by examining the effect of chemical inhibitors and monoclonal antibodies against CYP isoforms in vitro. Midazolam was metabolized to 1'-hydroxymidazolam (1'-OH MDZ) by human liver microsomes with a Michaelis-Menten constant (Km) of 4.1 (1.0) (mean (SD)) micromol litre(-1) and a maximum rate of metabolism (Vmax) of 5.5 (1.1) nmol min(-1) mg protein(-1) (n = 6). Of the nine representative human liver CYP isoforms, CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5, three (CYP2B6, 3A4 and 3A5) showed midazolam 1'-hydroxylation activity, with Kms of 40.7, 1.7 and 3.0 micromol litre(-1), respectively, and Vmax values of 12.0, 3.3 and 13.2 nmol min(-1) nmol P450(-1), respectively (n = 4). Midazolam 1'-hydroxylation activity of human liver microsomes correlated significantly with testosterone 6beta-hydroxylation activity, a marker of CYP3A activity (r2 = 0.77, P = 0.0001), but not with S-mephenytoin N-demethylation activity, a marker of CYP2B6 activity (r2 < 0.01, P = 0.84) (n = 11). Troleandomycin and orphenadrine, chemical inhibitors of CYP isoforms, inhibited the formation of 1'-OH MDZ by human liver microsomes. Monoclonal antibody against CYP3A4 inhibited the formation of 1'-OH MDZ by 79%, whereas monoclonal antibody against CYP2B6 had no effect on midazolam 1'-hydroxylation by human liver microsomes (n = 5). These results indicate that only CYP3A4, but not CYP2B6 or CYP2C, is involved in the metabolism of midazolam in vitro.
- Subjects :
- Antibodies, Monoclonal immunology
Cytochrome P-450 CYP1A2
Cytochrome P-450 CYP2B6
Cytochrome P-450 Enzyme Inhibitors
Cytochrome P-450 Enzyme System immunology
Cytochrome P-450 Enzyme System metabolism
Enzyme Inhibitors pharmacology
Humans
Hydroxylation
Microsomes, Liver metabolism
Orphenadrine pharmacology
Oxidoreductases, N-Demethylating antagonists & inhibitors
Oxidoreductases, N-Demethylating immunology
Oxidoreductases, N-Demethylating metabolism
Steroid Hydroxylases antagonists & inhibitors
Steroid Hydroxylases immunology
Steroid Hydroxylases metabolism
Troleandomycin pharmacology
Anesthetics, Intravenous metabolism
Anti-Anxiety Agents metabolism
Aryl Hydrocarbon Hydroxylases
Cytochrome P-450 Enzyme System physiology
Midazolam metabolism
Oxidoreductases, N-Demethylating physiology
Steroid 16-alpha-Hydroxylase
Steroid Hydroxylases physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0007-0912
- Volume :
- 86
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- British journal of anaesthesia
- Publication Type :
- Academic Journal
- Accession number :
- 11573629
- Full Text :
- https://doi.org/10.1093/bja/86.4.540