Back to Search Start Over

Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons when expressed heterologously, but only native G(i)-proteins do so in situ.

Authors :
Fernández-Fernández JM
Abogadie FC
Milligan G
Delmas P
Brown DA
Source :
The European journal of neuroscience [Eur J Neurosci] 2001 Jul; Vol. 14 (2), pp. 283-92.
Publication Year :
2001

Abstract

Although many G-protein-coupled neurotransmitter receptors are potentially capable of modulating both voltage-dependent Ca(2+) channels (I(Ca)) and G-protein-gated K(+) channels (I(GIRK)), there is a substantial degree of selectivity in the coupling to one or other of these channels in neurons. Thus, in rat superior cervical ganglion (SCG) neurons, M(2) muscarinic acetylcholine receptors (mAChRs) selectively activate I(GIRK) whereas M(4) mAChRs selectively inhibit I(Ca). One source of selectivity might be that the two receptors couple preferentially to different G-proteins. Using antisense depletion methods, we found that M(2) mAChR-induced activation of I(GIRK) is mediated by G(i) whereas M(4) mAChR-induced inhibition of I(Ca) is mediated by G(oA). Experiments with the beta gamma-sequestering peptides alpha-transducin and beta ARK1(C-ter) indicate that, although both effects are mediated by G-protein beta gamma subunits, the endogenous subunits involved in I(GIRK) inhibition differ from those involved in I(Ca) inhibition. However, this pathway divergence does not result from any fundamental selectivity in receptor-G-protein-channel coupling because both I(GIRK) and I(Ca) modulation can be rescued by heterologously expressed G(i) or G(o) proteins after the endogenously coupled alpha-subunits have been inactivated with Pertussis toxin (PTX). We suggest instead that the divergence in the pathways activated by the endogenous mAChRs results from a differential topographical arrangement of receptor, G-protein and ion channel.

Details

Language :
English
ISSN :
0953-816X
Volume :
14
Issue :
2
Database :
MEDLINE
Journal :
The European journal of neuroscience
Publication Type :
Academic Journal
Accession number :
11553279
Full Text :
https://doi.org/10.1046/j.0953-816x.2001.01642.x