Back to Search
Start Over
IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines.
- Source :
-
The Journal of allergy and clinical immunology [J Allergy Clin Immunol] 2001 Sep; Vol. 108 (3), pp. 430-8. - Publication Year :
- 2001
-
Abstract
- Background: IL-17 is a cytokine that has been reported to be produced by T lymphocytes. In vitro, IL-17 activates fibro-blasts and macrophages for the secretion of GM-CSF, TNF-alpha, IL-1beta, and IL-6. A number of these cytokines are involved in the airway remodeling that is observed within the lungs of asthmatic individuals.<br />Objective: In this study, we investigated the expression of IL-17 in sputum and bronchoalveolar lavage specimens obtained from asthmatic subjects and from nonasthmatic control subjects.<br />Methods: IL-17 was detected through use of immunocytochemistry, in situ hybridization, and Western blot. Bronchial fibroblasts were stimulated with IL-17, and cytokine production and chemokine production were detected through use of ELISA and RT-PCR.<br />Results: Using immunocytochemistry, we demonstrated that the numbers of cells positive for IL-17 are significantly increased in sputum and bronchoalveolar lavage fluids of subjects with asthma in comparison with control subjects (P <.001 and P <.005, respectively). We demonstrated that in addition to T cells, eosinophils in sputum and bronchoalveolar lavage fluids expressed IL-17. Peripheral blood eosinophils were also positive for IL-17, and the level of IL-17 in eosinophils purified from peripheral blood was significantly higher in subjects with asthma than in controls (P <.01). To further investigate the mechanism of action of IL-17 in vivo, we examined the effect of this cytokine on fibroblasts isolated from bronchial biopsies of asthmatic and nonasthmatic subjects. IL-17 did enhance the production of pro-fibrotic cytokines (IL-6 and IL-11) by fibroblasts, and this was inhibited by dexamethasone. Similarly, IL-17 increased the level of other fibroblast-derived inflammatory mediators, such as the alpha-chemokines, IL-8, and growth-related oncogene-alpha.<br />Conclusion: Our results, which demonstrate for the first time that eosinophils are a potential source of IL-17 within asthmatic airways, suggest that IL-17 might have the potential to amplify inflammatory responses through the release of proinflammatory mediators such as alpha-chemokines.
- Subjects :
- Adult
Bronchi cytology
Bronchoalveolar Lavage Fluid immunology
Chemokine CXCL1
Chemotactic Factors biosynthesis
Eosinophils immunology
Female
Fibroblasts cytology
Growth Substances biosynthesis
Humans
Interleukin-11 metabolism
Interleukin-17 isolation & purification
Interleukin-6 metabolism
Interleukin-8 biosynthesis
Male
Sputum immunology
Asthma immunology
Bronchi drug effects
Chemokines, CXC
Cytokines metabolism
Fibroblasts drug effects
Intercellular Signaling Peptides and Proteins
Interleukin-17 pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 0091-6749
- Volume :
- 108
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- The Journal of allergy and clinical immunology
- Publication Type :
- Academic Journal
- Accession number :
- 11544464
- Full Text :
- https://doi.org/10.1067/mai.2001.117929