Back to Search Start Over

Graviperception of lentil seedling roots grown in space (Spacelab D1 Mission).

Authors :
Perbal G
Driss-Ecole D
Rutin J
Salle G
Source :
Physiologia plantarum [Physiol Plant] 1987; Vol. 70, pp. 119-26.
Publication Year :
1987

Abstract

The growth and graviresponsiveness of roots were investigated in lentil seedlings (Lens culinaris L. cv. Verte du Puy) grown (1) in microgravity, (2) on a 1 g centrifuge in space, (3) in microgravity and then placed on the 1 g centrifuge for 3 h, (4) on the ground. Dry seeds were hydrated in space (except for the ground control) and incubated for 25 h at 22 degrees C in darkness. At the end of the experiment, the seedlings were photographed and fixed in glutaraldehyde in a Biorack glove box. Root length was similar for seedlings grown in space and for the ground and the 1 g centrifuge controls. The direction of root growth in the microgravity sample deviated strongly from the initial orientation of the roots of the dry seeds. This deviation could be due to spontaneous curvatures similar to those observed on clinostats. When lentil seedlings were first grown in microgravity for 25 h and then placed on the 1 g centrifuge for 3 h, their roots bent strongly under the effect of the centrifugal acceleration. The amplitude of root curvature on the centrifuge was not significantly different from that observed on ground controls growing in the vertical position and placed in the horizontal position for 3 h. The gravisensitivity of statocytes differentiated in microgravity was similar to that of statocytes differentiated on earth. There were no qualitative differences in the ultrastructural features of the gravisensing cells in microgravity and in the 1 g centrifuge and ground controls. However, the distribution of statoliths in the gravisensing cells was different in microgravity: most of them were observed in the proximal part of these cells. Thus, these organelles were not distributed at random, which is in contradiction with results obtained with clinostats. The distal complex of endoplasmic reticulum in the statocytes was not in contact with the amyloplasts. Contact and pressure of amyloplasts on the tubules were not prerequisites for gravisensing. The results obtained are not in agreement with the hypothesis that the distal endoplasmic reticulum would be the transducer of the action of the statoliths.

Details

Language :
English
ISSN :
0031-9317
Volume :
70
Database :
MEDLINE
Journal :
Physiologia plantarum
Publication Type :
Academic Journal
Accession number :
11539054
Full Text :
https://doi.org/10.1111/j.1399-3054.1987.tb06120.x