Back to Search Start Over

Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants.

Authors :
Thornton SF
Lerner DN
Tellam JH
Source :
Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA [Waste Manag Res] 2001 Feb; Vol. 19 (1), pp. 70-88.
Publication Year :
2001

Abstract

The chemical attenuation of inorganic contaminants in methanogenic landfill leachate, spiked with heavy metals (Cd, Cd, Ni and Zn), by two UK clay liner materials was compared in laboratory columns over 15 months. Ammonium was attenuated by ion-exchange but this attenuation was finite and when exhausted, NH4 passed through the liners at concentrations found in the leachate. The breakthrough behaviour of NH4 could be described by a simple distribution coefficient. Heavy metals were attenuated by sorption and precipitation of metal sulphide and carbonate compounds near the top of the liner. Adequate SO4 and CaCO3 in the liner is necessary to ensure the long term retention of heavy metals, and pH buffering agents added to stabilise reactive metal fractions should be admixed with the liner. Some metals may not be chemically attenuated by clay liners due to the formation of stable complexes with organic and/or colloidal fractions in leachate. Flushing of the liners with oxygenated water after leachate caused mobilisation of attenuated contaminants. Sorbed NH4 was released by the liners but groundwater loadings were manageable. Re-oxidation of metal sulphides under these conditions resulted in the release of heavy metals from the liners when the pH buffering capacity was poor. Contaminant attenuation by the clay liners was similar and the attenuation of NH4 and heavy metals could be predicted from the geochemical properties of the liner using simple tests. A conceptual model of clay liner performance is presented. Chemical attenuation of inorganic pollutants can be included in containment liner design to produce a dual reactive-passive barrier for landfills.

Details

Language :
English
ISSN :
0734-242X
Volume :
19
Issue :
1
Database :
MEDLINE
Journal :
Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Publication Type :
Academic Journal
Accession number :
11525477
Full Text :
https://doi.org/10.1177/0734242X0101900108