Back to Search Start Over

Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate.

Authors :
Marshall CG
Burkart MD
Keating TA
Walsh CT
Source :
Biochemistry [Biochemistry] 2001 Sep 04; Vol. 40 (35), pp. 10655-63.
Publication Year :
2001

Abstract

The iron-chelating peptide vibriobactin of the pathogenic Vibrio cholerae is assembled by a four-subunit nonribosomal peptide synthetase complex, VibE, VibB, VibH, and VibF, using 2,3-dihydroxybenzoate and L-threonine as precursors to two 2,3-dihydroxyphenyl- (DHP-) methyloxazolinyl groups in amide linkage on a norspermidine scaffold. We have tested the ability of the six-domain VibF subunit (Cy-Cy-A-C-PCP-C) to utilize various L-threonine analogues and found the beta-functionalized amino acids serine and cysteine can function as alternate substrates in aminoacyl-AMP formation (adenylation or A domain), aminoacyl-S-enzyme formation (A domain), acylation by 2,3-dihydrobenzoyl- (DHB-) S-VibB (heterocyclization or Cy domain), heterocyclization to DHP-oxazolinyl- and DHP-thiazolinyl-S-enzyme forms of VibF (Cy domain) as well as transfer to DHB-norspermidine at both N(5) and N(9) positions (condensation or C domain) to make the bis(oxazolinyl) and bis(thiazolinyl) analogues of vibriobactin. When L-threonyl-S-pantetheine or L-threonyl-S-(N-acetyl)cysteamine was used as a small-molecule thioester analogue of the threonyl-S-VibF acyl enzyme intermediate, the Cy domain(s) of a CyCyA fragment of VibF generated DHB-threonyl-thioester products of the condensation step but not the methyloxazolinyl thioesters of the heterocyclization step. This clean separation of condensation from cyclization validates a two-stage mechanism for threonyl, seryl, and cysteinyl heterocyclization domains in siderophore and antibiotic synthetases. Full heterocyclization activity could be restored by providing CyCyA with the substrate L-threonyl-S-peptidyl carrier protein (PCP)-C2, suggesting an important role for the protein scaffold component of the heterocyclization acceptor substrate. We also examined heterocyclization donor substrate specificity at the level of acyl group and protein scaffold and observed intolerance for substitution at either position.

Details

Language :
English
ISSN :
0006-2960
Volume :
40
Issue :
35
Database :
MEDLINE
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
11524010
Full Text :
https://doi.org/10.1021/bi010937s