Back to Search Start Over

Dehydroepiandrosterone alters Zucker rat soleus and cardiac muscle lipid profiles.

Authors :
Abadie JM
Malcom GT
Porter JR
Svec F
Source :
Experimental biology and medicine (Maywood, N.J.) [Exp Biol Med (Maywood)] 2001 Sep; Vol. 226 (8), pp. 782-9.
Publication Year :
2001

Abstract

High levels of serum free fatty acids (FFA) and lower proportions of polyunsaturated (PU) FAs, specifically arachidonic acid (AA), are common in obesity, insulin resistance (IR), and type 2 diabetes mellitus. Dehydrepiandrosterone (DHEA) decreases body fat content, dietary fat consumption, and insulin levels in obese Zucker rats (ZR), a genetic model of human youth onset obesity and type 2 diabetes. This study was conducted to investigate DHEA's effects on lean and obese ZR serum FFA levels and total lipid (TL) FA profiles in heart and soleus muscle. We postulated that DHEA alters serum FFA levels and tissue TL FA profiles of obese ZR so that they resemble the levels and profiles of lean ZR. If so, DHEA may directly or indirectly alter tissue lipids, FFA flux, and perhaps lower IR in obese ZR. Lean and obese male ZR were divided into six groups with 10 animals in each: obese ad libitum control, obese pair-fed, obese DHEA, lean ad libitum control, lean pair-fed, and lean DHEA. All animals had ad libitum access to a diet whose calories were 50% fat, 30% carbohydrate, and 20% protein. Only the diets of the DHEA treatment groups were supplemented with 0.6% DHEA. Pair-fed groups were given the average number of calories per day consumed by their corresponding DHEA group, and ad libitum groups had 24-h access to the DHEA-free diet. Serum FFA levels and heart and soleus TL FA profiles were measured. Serum FFA levels were higher in obese (approximately 1 mmol/L) compared to lean (approximately 0.6 mmol/L) ZR, regardless of group. In hearts, monounsaturated (MU) FA were greater and PU FA were proportionally lower in obese compared to the lean rats. In soleus, saturated and MU FA were greater and PU FA were proportionally lower in the obese compared to the lean rats. DHEA groups displayed significantly increased proportions of TL AA and decreased oleic acid in both muscle types. Mechanisms by which DHEA alters TL FA profiles are a reflection of changes occurring within specific lipid fractions such as FFA, phospholipid, and triglyceride. This study provides initial insights into DHEA's lipid altering effects.

Details

Language :
English
ISSN :
1535-3702
Volume :
226
Issue :
8
Database :
MEDLINE
Journal :
Experimental biology and medicine (Maywood, N.J.)
Publication Type :
Academic Journal
Accession number :
11520945
Full Text :
https://doi.org/10.1177/153537020222600811