Back to Search
Start Over
Characterization of the copper-sulfur chromophores in nitrous oxide reductase by resonance raman spectroscopy: evidence for sulfur coordination in the catalytic cluster.
- Source :
-
Journal of the American Chemical Society [J Am Chem Soc] 2001 Jan 31; Vol. 123 (4), pp. 576-87. - Publication Year :
- 2001
-
Abstract
- Nitrous oxide reductase (N(2)OR) from Pseudomonas stutzeri, a dimeric enzyme with a canonical metal ion content of at least six Cu ions per subunit, contains two types of multinuclear copper sites: Cu(A) and Cu(Z). An electron-transfer role for the dinuclear Cu(A) site is indicated based on its similarity to the Cu(A) site in cytochrome c oxidase (CcO), a dicysteinate-bridged, mixed-valence cluster. The Cu(Z) site is the catalytic site, which had long been thought to have novel spectroscopic properties. However, the low-energy electronic transitions and resonance Raman features attributable to Cu(Z) have been difficult to reconcile with a lack of conserved cysteine residues in standard alignments of N(2)OR sequences, other than those associated with the Cu(A) site. Recent evidence indicates that nitrous oxide reductase contains acid-labile sulfide and that this sulfide is a constituent of the Cu(Z) site (Rasmussen, T.; Berks, B. C.; Sanders-Loehr, J.; Dooley, D. M.; Zumft, W. G.; Thomson, A. J. Biochemistry 2000, 39, 12753-12756). We have used resonance Raman (RR) spectroscopy to selectively probe the Cu(A) and Cu(Z) sites of N(2)OR in three oxidation states (oxidized, semireduced, and reduced) as well as Cu(A)-only and Cu(Z)-only variants. The Cu(A) (mixed-valence, also designated as A(mv)) RR spectrum exhibits 10 vibrational modes between 220 and 410 cm(-1), with >1-cm(-1) (34)S isotope shifts that sum to -16.6 cm(-1). Many of these modes are also sensitive to (65)Cu and (15)N(His) and, thus, can be assigned to coupling of the Cu-S stretch, nu(Cu-S), with cysteine and histidine vibrations of the Cu(2)Cys(2)His(2) core. The RR spectrum of the Cu(Z) site (Z(ox)) reveals a novel Cu-sulfur chromophore with four S isotope-sensitive modes at 293, 347, 352, and 408 cm(-1), with a total (34)S shift of -19.9 cm(-)(1). The magnitude of the S isotope shifts and wide spread of perturbed frequencies are similar to those observed in Cu(A) and therefore suggest a sulfur-bridged cluster in Z(ox). The Z(ox) site has its nu(Cu-S)-containing modes at higher energy and exhibits less mixing with ligand deformations, compared to Cu(A). Reduction by dithionite produces a mixed-valence Cu(Z) site (Z(mv)) with six S isotope-sensitive RR modes between 282 and 382 cm(-1) and a total (34)S-shift of -16.9 cm(-1). The observation of a nearly identical RR spectrum in the C622D variant of N(2)OR, which lacks one of the conserved Cu(A) Cys residues, establishes that Cu-S vibrations observed in this variant arise from the Z(mv) site. Furthermore, none of the features assigned to Cu(Z) are detected in a second variant that contains only Cu(A). Therefore the resonance Raman spectra reported here provide compelling evidence for a unique Cu-S cluster in the catalytic site of nitrous oxide reductase.
Details
- Language :
- English
- ISSN :
- 0002-7863
- Volume :
- 123
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Academic Journal
- Accession number :
- 11456570
- Full Text :
- https://doi.org/10.1021/ja994322i