Back to Search
Start Over
Pre-treatment dosimetric verification by means of a liquid-filled electronic portal imaging device during dynamic delivery of intensity modulated treatment fields.
- Source :
-
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology [Radiother Oncol] 2001 Aug; Vol. 60 (2), pp. 181-90. - Publication Year :
- 2001
-
Abstract
- Background and Purpose: Although intensity modulated radiation therapy is characterized by three-dimensional dose distributions which are often superior to those obtained with conventional treatment plans, its routine clinical implementation is partially held back by the complexity of the beam verification. This is even more so when a dynamic multileaf collimator (dMLC) is used instead of a segmented beam delivery. We have therefore investigated the possibility of using a commercially available, liquid-filled electronic portal imaging device (EPID) for the pre-treatment quality assurance of dynamically delivered dose distributions.<br />Methods and Materials: A special acquisition mode was developed to optimize the image acquisition speed for dosimetry with the liquid-filled EPID. We investigated the accuracy of this mode for 6 and 18 MV photon beams through comparison with film and ion chamber measurements. The impact of leaf speed and pulse rate fluctuations was quantified by means of dMLC plans especially designed for this purpose. Other factors influencing the accuracy of the dosimetry (e.g. the need for build-up, remanence of the ion concentration in the liquid and bulging of the liquid at non-zero gantry angles) were studied as well. We finally compared dosimetric EPID images with the corresponding image prediction delivered without a patient in the beam.<br />Results: The dosimetric accuracy of the measured dose distribution is approximately 2% with respect to film and ion chamber measurements. The accuracy declines when leaf speed is increased beyond 2 cm/s, but is fairly insensitive to accelerator pulse rate fluctuations. The memory effect is found to be of no clinical relevance. When comparing the acquired and expected distributions, an overall agreement of 3% can be obtained, except at areas of steep dose gradients where slight positional shifts are translated into large errors.<br />Conclusions: Accurate dosimetric images of intensity modulated beam profiles delivered with a dMLC can be obtained with a commercially available, liquid-filled EPID. The developed acquisition mode is especially suited for fast and accurate pre-treatment verification of the intensity modulated fields.
Details
- Language :
- English
- ISSN :
- 0167-8140
- Volume :
- 60
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
- Publication Type :
- Academic Journal
- Accession number :
- 11439213
- Full Text :
- https://doi.org/10.1016/s0167-8140(01)00305-x