Back to Search Start Over

Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution.

Authors :
Malacarne LC
Mendes RS
Pedron IT
Lenzi EK
Source :
Physical review. E, Statistical, nonlinear, and soft matter physics [Phys Rev E Stat Nonlin Soft Matter Phys] 2001 Mar; Vol. 63 (3 Pt 1), pp. 030101. Date of Electronic Publication: 2001 Feb 13.
Publication Year :
2001

Abstract

The nonlinear diffusion equation partial delta rho/delta t=D Delta rho(nu) is analyzed here, where Delta[triple bond](1/r(d-1))(delta/delta r)r(d-1-theta) delta/delta r, and d, theta, and nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact point-source solution is obtained, enabling us to describe a large class of subdiffusion [ theta>(1-nu)d], "normal" diffusion [theta=(1-nu)d] and superdiffusion [theta<(1-nu)d]. Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.

Details

Language :
English
ISSN :
1539-3755
Volume :
63
Issue :
3 Pt 1
Database :
MEDLINE
Journal :
Physical review. E, Statistical, nonlinear, and soft matter physics
Publication Type :
Academic Journal
Accession number :
11308617
Full Text :
https://doi.org/10.1103/PhysRevE.63.030101