Back to Search
Start Over
Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution.
- Source :
-
Physical review. E, Statistical, nonlinear, and soft matter physics [Phys Rev E Stat Nonlin Soft Matter Phys] 2001 Mar; Vol. 63 (3 Pt 1), pp. 030101. Date of Electronic Publication: 2001 Feb 13. - Publication Year :
- 2001
-
Abstract
- The nonlinear diffusion equation partial delta rho/delta t=D Delta rho(nu) is analyzed here, where Delta[triple bond](1/r(d-1))(delta/delta r)r(d-1-theta) delta/delta r, and d, theta, and nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact point-source solution is obtained, enabling us to describe a large class of subdiffusion [ theta>(1-nu)d], "normal" diffusion [theta=(1-nu)d] and superdiffusion [theta<(1-nu)d]. Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.
Details
- Language :
- English
- ISSN :
- 1539-3755
- Volume :
- 63
- Issue :
- 3 Pt 1
- Database :
- MEDLINE
- Journal :
- Physical review. E, Statistical, nonlinear, and soft matter physics
- Publication Type :
- Academic Journal
- Accession number :
- 11308617
- Full Text :
- https://doi.org/10.1103/PhysRevE.63.030101