Back to Search
Start Over
Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism.
- Source :
-
Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology [Cancer Epidemiol Biomarkers Prev] 2001 Mar; Vol. 10 (3), pp. 209-16. - Publication Year :
- 2001
-
Abstract
- Steroid hormones, such as estrogens, appear to be associated with ovarian carcinogenesis, but the precise biological mechanisms are unclear. Polymorphisms in genes that regulate the concentration of estrogens and their metabolites may contribute directly to the individual variation in ovarian cancer risk through a mechanism involving oxidative stress or indirectly by influencing ovarian cancer susceptibility associated with ovulation and reproduction. We conducted a population-based, case-control study of primary ovarian cancer between 1993 and 1999 in Hawaii to test several genetic and related hypotheses. A personal interview and blood specimen were obtained in the subjects' homes. In a sample of 129 epithelial ovarian cancer cases and 144 controls, we compared the frequencies of several polymorphisms in genes that regulate steroid hormone metabolism and catecholestrogen formation. Multivariate unconditional logistic regression was used to model the association of each genetic polymorphism separately after adjusting for age, ethnicity, and other covariates. The high-activity Val432 allele of the CYP1B1 gene, which may be linked to oxidative stress through elevated 4-hydroxylated catecholestrogen formation, was associated with an increased risk of ovarian cancer. The Val/Leu genotype for CYP1B1 was associated with an odds ratio of 1.8 (95% confidence interval, 1.0-3.3) and the Val/Val genotype with an odds ratio of 3.8 (95% confidence interval, 1.2-11.4) compared with the Leu/Leu genotype (P = 0.005). Tobacco smokers with at least one CYP1A1 (MspI) m2 allele, one CYP1B1 Val allele, one COMT Met allele, or two CYP1A2 A alleles were at significantly increased risk of ovarian cancer compared to never-smokers with CYP1A1 (MspI) ml/ml, CYP1B1 Leu/Leu, COMT Val/Val, or CYP1A2 A/A genotypes, respectively. We found a positive statistical interaction (P = 0.03) between tobacco smoking and the CYP1A1 (MspI) polymorphism on the risk of ovarian cancer. None of the other gene-environment (pregnancy, oral contraceptive pill use) or gene-gene interactions were statistically significant. Although not significant, there was a suggestion that the effect of the CYP1B1 Val allele was reduced substantially in the presence of the high-activity COMT Met allele. These findings suggest that the CYP1B1-Val allele and perhaps other genetic polymorphisms in combination with environmental or hormonal exposures are susceptibility factors for ovarian cancer.
- Subjects :
- Adult
Aged
Carcinoma epidemiology
Case-Control Studies
Cohort Studies
Comorbidity
Confidence Intervals
Cytochrome P-450 CYP1B1
Estrogens genetics
Estrogens metabolism
Estrogens, Catechol biosynthesis
Female
Gene Frequency
Genotype
Hawaii epidemiology
Humans
Incidence
Logistic Models
Middle Aged
Multivariate Analysis
Odds Ratio
Ovarian Neoplasms epidemiology
Parity
Reference Values
Risk Assessment
Smoking epidemiology
Aryl Hydrocarbon Hydroxylases
Carcinoma genetics
Cytochrome P-450 Enzyme System genetics
Estrogens, Catechol genetics
Estrogens, Catechol metabolism
Ovarian Neoplasms genetics
Polymorphism, Genetic
Subjects
Details
- Language :
- English
- ISSN :
- 1055-9965
- Volume :
- 10
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
- Publication Type :
- Academic Journal
- Accession number :
- 11303589