Back to Search Start Over

Mesna: a novel renoprotective antioxidant in ischaemic acute renal failure.

Authors :
Mashiach E
Sela S
Weinstein T
Cohen HI
Shasha SM
Kristal B
Source :
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association [Nephrol Dial Transplant] 2001 Mar; Vol. 16 (3), pp. 542-51.
Publication Year :
2001

Abstract

Background: Reactive oxygen species (ROS) play a key role in renal ischaemia-reperfusion injury. After establishing the in vitro anti-oxidative potential of mesna, a sulfhydryl-containing compound, its effect on kidney function and morphology in a rat model of ischaemic acute renal failure (ARF) was examined.<br />Methods: Mesna (180 mg/kg) was administered at different time points relative to ischaemia and/or reperfusion onset. Kidney function was assessed by glomerular filtration rate (GFR) and fractional sodium excretion (FE(Na)) before a 45-min period of unilateral renal artery clamping and following 90 min of reperfusion. Mesna was administered by bolus, 30 min before the induction of ischaemia, 5 min before ischaemia, 5 min before reperfusion, and 5 min after the onset of reperfusion.<br />Results: Mesna improved function of the ischaemic kidney at each administration. When mesna was administered 5 min before the onset of reperfusion, GFR reached 90-100% of its pre ischaemic value and FE(Na) was improved by 75%. The beneficial effect of mesna was also demonstrated by light and electron microscopy. Kidneys treated with mesna 5 min before reperfusion resembled ischaemic non-reperfused kidneys and showed subtle morphological and ultrastructural changes compared with ischaemic-reperfused kidneys. Mesna had no haemodynamic effect on renal blood flow and did not induce any osmotic diuresis.<br />Conclusions: We suggest that mesna acts as an antioxidant. Its antioxidant potential together with optimal protection achieved when administered 5 min before reperfusion, supports the conclusion that mesna scavenges ROS generated at the onset of reperfusion, thus diminishing reperfusion injury and organ damage.

Details

Language :
English
ISSN :
0931-0509
Volume :
16
Issue :
3
Database :
MEDLINE
Journal :
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
Publication Type :
Academic Journal
Accession number :
11239029
Full Text :
https://doi.org/10.1093/ndt/16.3.542