Back to Search Start Over

Anthranilate synthase without an LLES motif from a hyperthermophilic archaeon is inhibited by tryptophan.

Authors :
Tang XF
Ezaki S
Atomi H
Imanaka T
Source :
Biochemical and biophysical research communications [Biochem Biophys Res Commun] 2001 Mar 09; Vol. 281 (4), pp. 858-65.
Publication Year :
2001

Abstract

Tk-trpE and Tk-trpG, the genes that encode the two subunits of anthranilate synthase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, have been expressed independently in Escherichia coli. The anthranilate synthase complex (Tk-AS complex) was obtained by heat-treatment of the mixture of cell-free extracts containing each recombinant protein, Tk-TrpE (alpha subunit) and Tk-TrpG (beta subunit), at 85 degrees C for 10 min. Further purification of Tk-AS complex was carried out by anion-exchange chromatography followed by gel-filtration. Molecular mass estimations from gel-filtration chromatography indicated that Tk-AS complex was a heterodimer (alphabeta). The complex displayed both ammonia- and glutamine-dependent anthranilate synthase activities, and could not utilize asparagine as an ammonia donor. The optimal pH was pH 10.0 and the optimal temperature was 85 degrees C in both cases. Mg2+ was necessary for the anthranilate synthase activity. At 75 degrees C, the K(m) values of chorismate for ammonia- and glutamine-dependent activities were 13.8 and 3.4 microM, respectively. The K(m) value of Mg2+ was 20.5 microM. The K(m) values of glutamine and NH4Cl were 88 microM and 5.6 mM, respectively. Although Tk-TrpE displayed 47.6% similarity with TrpE of Salmonella typhimurium, conserved amino acid residues proven to be essential for inhibition of enzyme activity by L-tryptophan were not present in Tk-TrpE. Namely, residues corresponding to Glu39, Met293, and Cys465 in the enzyme from S. typhimurium were replaced by Arg28, Thr221, and Ala384 in Tk-TrpE. Nevertheless, significant inhibition by L-tryptophan was observed, with K(i) values of 5.25 and 74 microM for ammonia and glutamine-dependent activities, respectively. The inhibition was competitive with respect to chorismate. The results suggest that the amino acid residues involved in the feedback inhibition by L-tryptophan in the case of Tk-AS complex are distinct from previously reported anthranilate synthases.<br /> (Copyright 2001 Academic Press.)

Details

Language :
English
ISSN :
0006-291X
Volume :
281
Issue :
4
Database :
MEDLINE
Journal :
Biochemical and biophysical research communications
Publication Type :
Academic Journal
Accession number :
11237738
Full Text :
https://doi.org/10.1006/bbrc.2001.4428