Back to Search Start Over

A ganglioside-specific sialyltransferase localizes to axons and non-Golgi structures in neurons.

Authors :
Stern CA
Tiemeyer M
Source :
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2001 Mar 01; Vol. 21 (5), pp. 1434-43.
Publication Year :
2001

Abstract

To investigate the tissue distribution and subcellular localization of ST3GalV (CMP-NeuAc:lactosylceramide alpha2,3 sialyltransferase/GM3 synthase) in the adult mouse, we generated two antisera against mouse ST3GalV that were designated CS2 (directed against amino acids K227-I272) and CS14 (directed against amino acids D308-H359). We previously reported that CS2 antiserum stains medial and trans-Golgi cisternae in all cell types investigated. In neural tissue, however, CS14 antiserum reveals a subpopulation of ST3GalV with a subcellular distribution complementary to CS2 antiserum. CS14 antiserum strongly stains axons in cortical, cerebellar, brainstem, and spinal cord tissue sections. The subcellular localization of neuronal ST3GalV is maintained in primary cultures of rat hippocampal neurons and in PC12 cells. In PC12 cells, ST3GalV localization evolves during NGF-induced differentiation such that a pool of enzyme leaves the Golgi for a distal compartment in conjunction with neurite outgrowth. In PC12 cells transfected with an epitope-tagged form of ST3GalV, staining for the epitope tag coincides with expression of endogenous enzyme. The non-Golgi pool of ST3GalV does not colocalize with markers for the trans-Golgi network, endosome, or synaptic vesicles, nor is it detected on the cell surface. Distinct subpopulations of ST3GalV imply that ganglioside synthesis can occur outside of the Golgi or, alternatively, that a portion of the total ST3GalV pool subserves a nonenzymatic function. Significantly fewer transfected cells were found in PC12 cultures treated with plasmid encoding ST3GalV than in cultures treated with control plasmid, indicating that the expression of ST3GalV in excess of endogenous levels results in either cell death or a decreased rate of cell division.

Details

Language :
English
ISSN :
1529-2401
Volume :
21
Issue :
5
Database :
MEDLINE
Journal :
The Journal of neuroscience : the official journal of the Society for Neuroscience
Publication Type :
Academic Journal
Accession number :
11222633