Back to Search Start Over

Membrane depolarization mediates phosphorylation and nuclear translocation of CREB in vascular smooth muscle cells.

Authors :
Stevenson AS
Cartin L
Wellman TL
Dick MH
Nelson MT
Lounsbury KM
Source :
Experimental cell research [Exp Cell Res] 2001 Feb 01; Vol. 263 (1), pp. 118-30.
Publication Year :
2001

Abstract

Diverse signals have the potential to modulate gene transcription through the Ca2+ and cAMP response element binding protein (CREB) in vascular smooth muscle cells (VSMCs). A key step in the transmission of these signals is import into the nucleus. Here, we provide evidence that the Ran GTPase, which regulates nuclear import, exerts different regulation over PDGF-BB, Ca2+, and cAMP signaling to CREB in VSMCs. PDGF-BB, membrane depolarization, and forskolin increased levels of activated CREB (P-CREB) and c-fos in VSMCs and intact aorta. The calcium channel antagonist nimodipine reduced the level of P-CREB stimulated by membrane depolarization, but not by PDGF-BB or forskolin. Block of Ran-mediated nuclear import, by wheat germ agglutinin or an inactivating Ran mutant (T24N Ran), significantly reduced nuclear P-CREB in response to PDGF-BB or membrane depolarization, but enhanced levels of P-CREB in response to forskolin. Contrary to expectation, block of nuclear import led to the appearance of P-CREB in the cytoplasm after depolarization. Furthermore, blocking nuclear export with leptomycin B reduced P-CREB stimulation by both depolarization and PDGF-BB. These results suggest that translocation of CREB between the nucleus and the cytoplasm provides an important role in CREB activating pathways in VSMCs.

Details

Language :
English
ISSN :
0014-4827
Volume :
263
Issue :
1
Database :
MEDLINE
Journal :
Experimental cell research
Publication Type :
Academic Journal
Accession number :
11161711
Full Text :
https://doi.org/10.1006/excr.2000.5107