Back to Search Start Over

Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting.

Authors :
Fekete C
Mihály E
Luo LG
Kelly J
Clausen JT
Mao Q
Rand WM
Moss LG
Kuhar M
Emerson CH
Jackson IM
Lechan RM
Source :
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2000 Dec 15; Vol. 20 (24), pp. 9224-34.
Publication Year :
2000

Abstract

Because cocaine- and amphetamine-regulated transcript (CART) coexists with alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus neurons and we have recently demonstrated that alpha-MSH innervates TRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN), we raised the possibility that CART may also be contained in fibers that innervate hypophysiotropic thyrotropin-releasing hormone (TRH) neurons and modulate TRH gene expression. Triple-labeling fluorescent in situ hybridization and immunofluorescence were performed to reveal the morphological relationships between pro-TRH mRNA-containing neurons and CART- and alpha-MSH-immunoreactive (IR) axons. CART-IR axons densely innervated the majority of pro-TRH mRNA-containing neurons in all parvocellular subdivisions of the PVN and established asymmetric synaptic specializations with pro-TRH neurons. However, whereas all alpha-MSH-IR axons in the PVN contained CART-IR, only a portion of CART-IR axons in contact with pro-TRH neurons were immunoreactive for alpha-MSH. In the medial and periventricular parvocellular subdivisions of the PVN, CART was co-contained in approximately 80% of pro-TRH neuronal perikarya, whereas colocalization with pro-TRH was found in <10% of the anterior parvocellular subdivision neurons. In addition, >80% of TRH/CART neurons in the periventricular and medial parvocellular subdivisions accumulated Fluoro-Gold after systemic administration, suggesting that CART may serve as a marker for hypophysiotropic TRH neurons. CART prevented fasting-induced suppression of pro-TRH in the PVN when administered intracerebroventricularly and increased the content of TRH in hypothalamic cell cultures. These studies establish an anatomical association between CART and pro-TRH-producing neurons in the PVN and demonstrate that CART has a stimulatory effect on hypophysiotropic TRH neurons by increasing pro-TRH gene expression and the biosynthesis of TRH.

Details

Language :
English
ISSN :
1529-2401
Volume :
20
Issue :
24
Database :
MEDLINE
Journal :
The Journal of neuroscience : the official journal of the Society for Neuroscience
Publication Type :
Academic Journal
Accession number :
11125000