Back to Search Start Over

An in vitro cell culture system to study the influence of external pneumatic compression on endothelial function.

Authors :
Dai G
Tsukurov O
Orkin RW
Abbott WM
Kamm RD
Gertler JP
Source :
Journal of vascular surgery [J Vasc Surg] 2000 Nov; Vol. 32 (5), pp. 977-87.
Publication Year :
2000

Abstract

Purpose: External pneumatic compression (EPC) is an effective means of prophylaxis against deep venous thrombosis. However, its mechanism remains poorly understood. Understanding of the biological consequences of EPC is an important goal for optimizing performance of the EPC-generating device and providing guidance for clinical use. We present a new in vitro cell culture system (Venous Flow Simulator) that simulates blood flow and vessel collapse conditions during EPC, and we examine the influence of these factors on endothelial cell (EC) fibrinolytic activity and vasomotor function.<br />Methods: An in vitro cell culture system was designed to replicate the hemodynamic shear stress and vessel wall strain associated with induced blood flow during different modes of EPC. Human umbilical vein endothelial cells were cultured in the system and subjected to intermittent flow, vessel collapse, or a combination of the two. The biologic response was assessed through changes in EC morphology and the expression of fibrinolytic factors tissue plasminogen activator, plasminogen activator inhibitor type 1, profibrinolytic receptor (annexin II), and vasomotor factors endothelial nitric oxide synthase and endothelin-1.<br />Results: The cells remained attached and viable after being subjected to intermittent pulsatile flow (F) and tube compression (C). In F and F + C, cells aligned in the direction of flow after 6 hours. Northern blot analysis of messenger RNA shows that there is an upregulation of tissue plasminogen activator expression (1.95 +/- 0.19 in F and 2.45 +/- 0.46 in FC) and endothelial nitric oxide synthase expression (2.08 +/- 0.25 in F and 2.11 +/- 0.21 in FC). Plasminogen activator inhibitor type 1, annexin II, and endothelin 1 show no significant change under any experimental conditions. The results also show that pulsatile flow, more than vessel compression, influences EC morphology and function.<br />Conclusion: Effects on ECs of intermittent flow and vessel collapse, either individually or simultaneously, were simulated with an in vitro system of new design. Initial results show that intermittent flow associated with EPC upregulates EC fibrinolytic potential and influences factors altering vasomotor tone. The system will facilitate future studies of EC function during EPC.

Details

Language :
English
ISSN :
0741-5214
Volume :
32
Issue :
5
Database :
MEDLINE
Journal :
Journal of vascular surgery
Publication Type :
Academic Journal
Accession number :
11054230
Full Text :
https://doi.org/10.1067/mva.2000.110357