Back to Search Start Over

Fluorescence properties and functional roles of tryptophan residues 60d, 96, 148, 207, and 215 of thrombin.

Authors :
Bell R
Stevens WK
Jia Z
Samis J
Côté HC
MacGillivray RT
Nesheim ME
Source :
The Journal of biological chemistry [J Biol Chem] 2000 Sep 22; Vol. 275 (38), pp. 29513-20.
Publication Year :
2000

Abstract

Conservative Trp-to-Phe mutations were individually created in human thrombin at positions 60d, 96, 148, 207, and 215. Fluorescence intensities for these residues varied by a factor of 6. Residues 60d, 96, 148, and 215 transferred energy to the thrombin inhibitor 5-dimethylaminonaphthalene-1-sulfonylarginine-N-(3-ethyl-1,5- pentanediyl)amide efficiently, but residue 207 did not. Intensities correlated inversely with exposure to solvent, and measured and theoretical energy transfer efficiencies agreed well. Function was measured with respect to fibrinogen clotting, platelet and factor V activation, inhibition by antithrombin, and the thrombomodulin-dependent activation of protein C and thrombin-activable fibrinolysis inhibitor (TAFI). All activities of W96F and W207F ranged from 74 to 154% of the wild-type activity. This was also true for W148F, except for inhibition by antithrombin, where it showed 60% activity. W60dF was deficient by 30, 57, and 43% with fibrinogen clotting, platelet activation, and factor V cleavage (Arg(1006)), respectively. W215F was deficient by 90, 55, and 56% with fibrinogen clotting, platelet activation, and factor V cleavage (Arg(1536)). With protein C and TAFI, W96F, W148F, and W207F were normal. W60dF, however, was 76 and 23% of normal levels with protein C and TAFI, respectively. In contrast, W215F was 25 and 124% of normal levels in these reactions. Thus, many activities of thrombin are retained upon substitution of Trp with Phe at positions 96, 148, and 207. Trp(60d), however, appears to be very important for TAFI activation, and Trp(215) appears to very important for clotting and protein C activation.

Details

Language :
English
ISSN :
0021-9258
Volume :
275
Issue :
38
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
10831587
Full Text :
https://doi.org/10.1074/jbc.M001759200