Back to Search Start Over

Embryonic stem-cell derived neurones express a maturation dependent pattern of voltage-gated calcium channels and calcium-binding proteins.

Authors :
Arnhold S
Andressen C
Angelov DN
Vajna R
Volsen SG
Hescheler J
Addicks K
Source :
International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience [Int J Dev Neurosci] 2000 Apr-Jun; Vol. 18 (2-3), pp. 201-12.
Publication Year :
2000

Abstract

There are remarkable changes of calcium binding proteins and voltage dependent Ca(2+) channel subtypes during in vitro differentiation of embryonic stem cell derived neurons. To observe these maturation dependent changes neurones were studied using combined immunohistochemical, patch clamp and videomicroscopic time lapse techniques. Embryonic stem cell derived neuronal maturation proceeds from apolar to bi- and multipolar neurones, expressing all Ca(2+) channel subtypes. There is, however, a clear shift in channel contribution to whole cell current from apolar neurones with mainly N- and L-type channel contribution in favour of P/Q- and R-type participation in bi- and multipolar cells. Expression of the calcium binding protein parvalbumin could be detected in bipolar, while calretinin and calbindin was preferentially found in multipolar neurones. Our data provides new insights into fundamental neurodevelopmental mechanisms related to Ca(2+) homeostasis, and clarifies contradictory reports on the development of Ca(2+) channel expression using primary cultures of neurones already committed to certain brain compartments.

Details

Language :
English
ISSN :
0736-5748
Volume :
18
Issue :
2-3
Database :
MEDLINE
Journal :
International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
Publication Type :
Academic Journal
Accession number :
10715575
Full Text :
https://doi.org/10.1016/s0736-5748(99)00089-1