Back to Search
Start Over
Purification of recombinant flavanone 3beta-hydroxylase from petunia hybrida and assignment of the primary site of proteolytic degradation.
- Source :
-
Archives of biochemistry and biophysics [Arch Biochem Biophys] 2000 Mar 15; Vol. 375 (2), pp. 364-70. - Publication Year :
- 2000
-
Abstract
- Flavanone 3beta-hydroxylase catalyzes the Fe(II)/oxoglutarate-dependent hydroxylation of (2S)-flavanones to (2R,3R)-dihydroflavonols in the course of flavonol/anthocyanin or catechin biosynthesis. The enzyme from Petunia hybrida consists of a 41,655-Da polypeptide that is prone to rapid proteolysis in crude plant extracts as well as on expression in Escherichia coli, and commercial protease inhibitors were inefficient in stopping the degradation. To pinpoint the primary site of proteolysis and to improve the activity yields, two revised schemes of purification were developed for the recombinant polypeptides. Applying a four-step protocol based on extraction and ion-exchange chromatography at pH 7.5, the primary, catalytically inactive proteolytic enzyme fragment (1.1 mg) was isolated and shown to cross-react on Western blotting as one homogeneous band of about 38 kDa. Mass spectrometric analysis assigned a mass of 37,820 +/- 100 Da to this fragment, and partial sequencing revealed an unblocked amino terminus identical to that of the native 3beta-hydroxylase. Thus, the native enzyme had been degraded by proteolysis of a small carboxy-terminal portion, and the primary site of cleavage must be assigned most likely to the Glu 337-Leu 338 bond, accounting for a loss of about 3800 Da. Alternatively, the enzyme degradation was greatly reduced when the extraction of recombinant bacteria was carried out with phosphate buffer at pH 5.5 followed by size exlusion and anion-exchange chromatography. This rapid, two-step purification resulted in a homogeneous 3beta-hydroxylase of high specific acitivity (about 32 mkat/kg) at roughly 5% yield, and the procedure is a major breakthrough in mechanistic investigations of this class of labile dioxygenases.<br /> (Copyright 2000 Academic Press.)
- Subjects :
- Amino Acid Sequence
Blotting, Western
Buffers
Catalysis drug effects
Chromatography, Gel
Chromatography, Ion Exchange
Endopeptidases metabolism
Enzyme Stability drug effects
Escherichia coli genetics
Mass Spectrometry
Mixed Function Oxygenases chemistry
Molecular Sequence Data
Molecular Weight
Peptide Fragments chemistry
Peptide Fragments isolation & purification
Peptide Fragments metabolism
Plant Proteins chemistry
Plant Proteins isolation & purification
Plant Proteins metabolism
Protease Inhibitors pharmacology
Recombinant Proteins chemistry
Recombinant Proteins isolation & purification
Recombinant Proteins metabolism
Sequence Analysis, Protein
Time Factors
Mixed Function Oxygenases isolation & purification
Mixed Function Oxygenases metabolism
Plants enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 0003-9861
- Volume :
- 375
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Archives of biochemistry and biophysics
- Publication Type :
- Academic Journal
- Accession number :
- 10700394
- Full Text :
- https://doi.org/10.1006/abbi.1999.1676