Back to Search
Start Over
The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2000 Feb 25; Vol. 275 (8), pp. 5600-5. - Publication Year :
- 2000
-
Abstract
- A checkpoint operating in the G(2) phase of the cell cycle prevents entry into mitosis in the presence of DNA damage. UCN-01, a protein kinase inhibitor currently undergoing clinical trials for cancer treatment, abrogates G(2) checkpoint function and sensitizes p53-defective cancer cells to DNA-damaging agents. In most species, the G(2) checkpoint prevents the Cdc25 phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. This is accomplished by maintaining Cdc25 in a phosphorylated form that binds 14-3-3 proteins. The checkpoint kinases, Chk1 and Cds1, are proposed to regulate the interactions between human Cdc25C and 14-3-3 proteins by phosphorylating Cdc25C on serine 216. 14-3-3 proteins, in turn, function to keep Cdc25C out of the nucleus. Here we report that UCN-01 caused loss of both serine 216 phosphorylation and 14-3-3 binding to Cdc25C in DNA-damaged cells. In addition, UCN-01 potently inhibited the ability of Chk1 to phosphorylate Cdc25C in vitro. In contrast, Cds1 was refractory to inhibition by UCN-01 in vitro, and Cds1 was still phosphorylated in irradiated cells treated with UCN-01. Thus, neither Cds1 nor kinases upstream of Cds1, such as ataxia telangiectasia-mutated, are targets of UCN-01 action in vivo. Taken together our results identify the Chk1 kinase and the Cdc25C pathway as potential targets of G(2) checkpoint abrogation by UCN-01.
- Subjects :
- Checkpoint Kinase 1
Checkpoint Kinase 2
Cloning, Molecular
DNA Damage
Dose-Response Relationship, Radiation
G2 Phase drug effects
HeLa Cells
Humans
Membrane Proteins metabolism
Models, Biological
Phosphorylation drug effects
Phosphorylation radiation effects
Plasmids
Protein Kinases metabolism
Protein Serine-Threonine Kinases antagonists & inhibitors
Protein Serine-Threonine Kinases metabolism
Protein-Tyrosine Kinases antagonists & inhibitors
Protein-Tyrosine Kinases metabolism
Serine metabolism
Staurosporine analogs & derivatives
Time Factors
Alkaloids pharmacology
Antineoplastic Agents pharmacology
Cell Cycle Proteins antagonists & inhibitors
Protein Kinase Inhibitors
cdc25 Phosphatases antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9258
- Volume :
- 275
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 10681541
- Full Text :
- https://doi.org/10.1074/jbc.275.8.5600