Back to Search
Start Over
Structural determinants in domain II of human glutathione transferase M2-2 govern the characteristic activities with aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine, and 1,2-dichloro-4-nitrobenzene.
- Source :
-
Protein science : a publication of the Protein Society [Protein Sci] 1999 Dec; Vol. 8 (12), pp. 2742-50. - Publication Year :
- 1999
-
Abstract
- Two human Mu class glutathione transferases, hGST M1-1 and hGST M2-2, with high sequence identity (84%) exhibit a 100-fold difference in activities with the substrates aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine (cyanoDMNG), and 1,2-dichloro-4-nitrobenzene (DCNB), hGST M2-2 being more efficient. A sequence alignment with the rat Mu class GST M3-3, an enzyme also showing high activities with aminochrome and DCNB, demonstrated an identical structural cluster of residues 164-168 in the alpha6-helices of rGST M3-3 and hGST M2-2, a motif unique among known sequences of human, rat, and mouse Mu class GSTs. A putative electrostatic network Arg107-Asp161-Arg165-Glu164(-Gln167) was identified based on the published three-dimensional structure of hGST M2-2. Corresponding variant residues of hGSTM1-1 (Leu165, Asp164, and Arg167) as well as the active site residue Ser209 were targeted for point mutations, introducing hGST M2-2 residues to the framework of hGST M1-1, to improve the activities with substrates characteristic of hGST M2-2. In addition, chimeric enzymes composed of hGST M1-1 and hGST M2-2 sequences were analyzed. The activity with 1-chloro-2,4-dinitrobenzene (CDNB) was retained in all mutant enzymes, proving that they were catalytically competent, but none of the point mutations improved the activities with hGST M2-2 characteristic substrates. The chimeric enzymes showed that the structural determinants of these activities reside in domain II and that residue Arg165 in hGST M2-2 appears to be important for the reactions with cyanoDMNG and DCNB. A mutant, which contained all the hGST M2-2 residues of the putative electrostatic network, was still lacking one order of magnitude of the activities with the characteristic substrates of wild-type hGST M2-2. It was concluded that a limited set of point mutations is not sufficient, but that indirect secondary structural affects also contribute to the hGST M2-2 characteristic activities with aminochrome, cyanoDMNG, and DCNB.
- Subjects :
- Amino Acid Sequence
Animals
Binding Sites
Glutathione Transferase genetics
Humans
Mice
Molecular Sequence Data
Mutagenesis, Site-Directed
Protein Structure, Secondary
Protein Structure, Tertiary
Rats
Sequence Alignment
Substrate Specificity
Glutathione Transferase chemistry
Indolequinones
Indoles chemistry
Nitrobenzenes chemistry
Nitrosoguanidines chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 0961-8368
- Volume :
- 8
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Protein science : a publication of the Protein Society
- Publication Type :
- Academic Journal
- Accession number :
- 10631991
- Full Text :
- https://doi.org/10.1110/ps.8.12.2742