Back to Search
Start Over
Medium perfusion enhances osteogenesis by murine osteosarcoma cells in three-dimensional collagen sponges.
- Source :
-
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research [J Bone Miner Res] 1999 Dec; Vol. 14 (12), pp. 2118-26. - Publication Year :
- 1999
-
Abstract
- In this study, we examined in vitro histogenesis by murine K8 osteosarcoma cells maintained in three-dimensional (3D) collagen sponges. We tested the hypothesis that perfusion of medium enhances cell viability and their biosynthetic activity as assessed by expression of the osteoblastic phenotype and mineral deposition. At intervals, samples were harvested and analyzed histologically, biochemically, and by Northern hybridization for type I collagen, osteopontin (OPN), osteocalcin (OC), and core binding factor alpha 1 (Cbfa1). Histologic evaluation showed greater viability, more alkaline phosphatase (ALP)-positive cells, and more mineralized tissue in the perfused sponges after 21 days. Immunohistological assessment of proliferating cell nuclear antigen revealed 5-fold more proliferating cells in the perfused sponges compared with the controls (p = 0.0201). There was 3-fold more ALP activity in the perfused sponges than the controls at 6 days and 14 days (p = 0.0053). The perfused sponges contained twice the DNA and eight times more calcium than the nonperfused controls after 21 days (p < 0.0001 for both). Northern hybridization analysis revealed more mRNA for collagen type I (2-fold) and 50% more for OC at 14 days and 21 days, whereas OPN and Cbfa1 mRNA expression remained unaffected by the medium perfusion. These results show that medium perfusion had beneficial effects on the proliferation and biosynthetic activity of this osteosarcoma cell line. This system mimics the 3D geometry of bone tissue and has the potential for revealing mechanisms of regulation of osteogenesis.
- Subjects :
- Alkaline Phosphatase metabolism
Animals
Calcification, Physiologic
Calcium metabolism
Cell Culture Techniques methods
Cell Survival
Collagen metabolism
Core Binding Factor Alpha 1 Subunit
Core Binding Factors
Gene Expression Regulation
Immunohistochemistry
Mice
Osteocalcin genetics
Osteopontin
Osteosarcoma
Perfusion
Phenotype
RNA, Messenger metabolism
Sialoglycoproteins genetics
Transcription Factors genetics
Tumor Cells, Cultured
Collagen genetics
Neoplasm Proteins
Osteogenesis genetics
Subjects
Details
- Language :
- English
- ISSN :
- 0884-0431
- Volume :
- 14
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
- Publication Type :
- Academic Journal
- Accession number :
- 10620071
- Full Text :
- https://doi.org/10.1359/jbmr.1999.14.12.2118