Back to Search
Start Over
Skeletal muscle energy metabolism during prolonged, fatiguing exercise.
- Source :
-
Journal of applied physiology (Bethesda, Md. : 1985) [J Appl Physiol (1985)] 1999 Dec; Vol. 87 (6), pp. 2341-7. - Publication Year :
- 1999
-
Abstract
- A depletion of phosphocreatine (PCr), fall in the total adenine nucleotide pool (TAN = ATP + ADP + AMP), and increase in TAN degradation products inosine 5'-monophosphate (IMP) and hypoxanthine are observed at fatigue during prolonged exercise at 70% maximal O(2) uptake in untrained subjects [J. Baldwin, R. J. Snow, M. F. Carey, and M. A. Febbraio. Am. J. Physiol. 277 (Regulatory Integrative Comp. Physiol. 46): R295-R300, 1999]. The present study aimed to examine whether these metabolic changes are also prevalent when exercise is performed below the blood lactate threshold (LT). Six healthy, untrained humans exercised on a cycle ergometer to voluntary exhaustion at an intensity equivalent to 93 +/- 3% of LT ( approximately 65% peak O(2) uptake). Muscle biopsy samples were obtained at rest, at 10 min of exercise, approximately 40 min before fatigue (F-40 =143 +/- 13 min), and at fatigue (F = 186 +/- 31 min). Glycogen concentration progressively declined (P < 0.01) to very low levels at fatigue (28 +/- 6 mmol glucosyl U/kg dry wt). Despite this, PCr content was not different when F-40 was compared with F and was only reduced by 40% when F was compared with rest (52. 8 +/- 3.7 vs. 87.8 +/- 2.0 mmol/kg dry wt; P < 0.01). In addition, TAN concentration was not reduced, IMP did not increase significantly throughout exercise, and hypoxanthine was not detected in any muscle samples. A significant correlation (r = 0.95; P < 0. 05) was observed between exercise time and glycogen use, indicating that glycogen availability is a limiting factor during prolonged exercise below LT. However, because TAN was not reduced, PCr was not depleted, and no correlation was observed between glycogen content and IMP when glycogen stores were compromised, fatigue may be related to processes other than those involved in muscle high-energy phosphagen metabolism.
- Subjects :
- Adenine Nucleotides metabolism
Adult
Differential Threshold
Exercise Test
Fatigue etiology
Glycogen metabolism
Humans
Lactic Acid blood
Oxygen Consumption physiology
Phosphocreatine metabolism
Time Factors
Energy Metabolism physiology
Exercise physiology
Muscle, Skeletal metabolism
Physical Endurance
Subjects
Details
- Language :
- English
- ISSN :
- 8750-7587
- Volume :
- 87
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Journal of applied physiology (Bethesda, Md. : 1985)
- Publication Type :
- Academic Journal
- Accession number :
- 10601187
- Full Text :
- https://doi.org/10.1152/jappl.1999.87.6.2341