Back to Search
Start Over
Regulation of uncoupling protein-2 and -3 by growth hormone in skeletal muscle and adipose tissue in growth hormone-deficient adults.
- Source :
-
The Journal of clinical endocrinology and metabolism [J Clin Endocrinol Metab] 1999 Nov; Vol. 84 (11), pp. 4073-8. - Publication Year :
- 1999
-
Abstract
- The newly described uncoupling proteins, UCP2 and UCP3, may play a role in regulating energy expenditure (EE) in humans. GH deficiency (GHD) is associated with decreased lean body mass, increased adiposity, and reduced EE, which are reversed by GH treatment. In the present study we investigated whether GH treatment for 4 months influenced the expression of UCPs in skeletal muscle and adipose tissue in 22 GHD patients who were investigated before and after GH (n = 11) or placebo (n = 11) treatment. GH treatment increased the amount of lean body mass by 4.5% (P < 0.05) and decreased body fat mass by 12% (P < 0.05), whereas no changes in these parameters were observed after placebo treatment. The level of UCP3 messenger ribonucleic acid (mRNA) increased 3-fold (P < 0.005) in skeletal muscle and almost 2-fold (P < 0.05) in adipose tissue after GH treatment, with no changes observed after placebo treatment. Skeletal muscle UCP2 mRNA was slightly (25%), but significantly (P < 0.05), decreased, whereas the level of UCP2 mRNA in adipose tissue was unaffected after GH treatment. The T4 level was positively correlated with skeletal muscle UCP2 and UCP3 expression (r = 0.518; P < 0.05 and r = 0.463; P < 0.05, respectively). Furthermore, plasma free fatty acids were positively correlated with the expression of UCP2 (r = 0.573; P < 0.01) and UCP3 (r = 0.518; P < 0.05) in skeletal muscle. The marked increase in UCP3 expression after GH treatment indicates that the UCPs might play a role in the effects of GH on EE in GHD patients. Finally, the strong association between thyroid hormone and skeletal muscle UCP and the correlation between plasma free fatty acids and UCP expression in skeletal muscle indicate that these hormones/metabolites might influence UCP expression in humans as previously demonstrated in rodents.
- Subjects :
- Adult
Body Composition drug effects
Energy Metabolism
Fatty Acids, Nonesterified metabolism
Female
Humans
Ion Channels
Male
RNA, Messenger metabolism
Regression Analysis
Uncoupling Protein 2
Uncoupling Protein 3
Adipose Tissue metabolism
Carrier Proteins genetics
Gene Expression Regulation drug effects
Human Growth Hormone deficiency
Human Growth Hormone pharmacology
Membrane Transport Proteins
Mitochondrial Proteins
Muscle, Skeletal metabolism
Proteins genetics
Subjects
Details
- Language :
- English
- ISSN :
- 0021-972X
- Volume :
- 84
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- The Journal of clinical endocrinology and metabolism
- Publication Type :
- Academic Journal
- Accession number :
- 10566652
- Full Text :
- https://doi.org/10.1210/jcem.84.11.6109